利用CNN(卷积神经网络)训练mnist数据集
程序员文章站
2022-03-17 20:56:18
...
本文参考了经典的LeNet-5卷积神经网络模型对mnist数据集进行训练。LeNet-5模型是大神Yann LeCun于1998年在论文"Gradient-based learning applied to document recognition"中提出来的,它是第一个成功应用于数字识别问题的卷积神经网络。下图展示了LeNet-5模型的架构。
文中所使用的卷积神经网络结构依次为输入层,卷积层1,池化层1,卷积层2,池化层2,全连接层1,全连接层2,输出层。
"""A very simple MNIST classifier.
See extensive documentation at
https://www.tensorflow.org/get_started/mnist/beginners
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import tensorflow as tf
data_dir = './data/'
mnist = input_data.read_data_sets(data_dir, one_hot=True)
#第一层卷积层尺寸和深度
CONV_1_SIZE = 3
CONV_1_DEEP = 32
INPUT_CHANNELS = 1 #输入通道数
#第二层卷积层尺寸和深度
CONV_2_SIZE = 3
CONV_2_DEEP = 64
#每批次数据集的大小
BATCH_SIZE = 100
#学习率
LEARNING_RATE_INIT = 1e-3 #学习率初始值
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
#对输入向量x转换成图像矩阵形式
with tf.variable_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1]) #因为数据的条数未知,所以为-1
#卷积层1
with tf.variable_scope('conv1'):
initial_value = tf.truncated_normal([CONV_1_SIZE,CONV_1_SIZE,INPUT_CHANNELS,CONV_1_DEEP], stddev=0.1)
conv_1_w = tf.Variable(initial_value=initial_value, collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'WEIGHTS'])
conv_1_b = tf.Variable(initial_value=tf.constant(0.1, shape=[CONV_1_DEEP]))
conv_1_l = tf.nn.conv2d(x_image, conv_1_w, strides=[1,1,1,1], padding='SAME') + conv_1_b
conv_1_h = tf.nn.relu(conv_1_l)
#池化层1
with tf.variable_scope('pool1'):
pool_1_h = tf.nn.max_pool(conv_1_h, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')
#卷积层2
with tf.variable_scope('conv2'):
conv_2_w = tf.Variable(tf.truncated_normal([CONV_2_SIZE,CONV_2_SIZE,CONV_1_DEEP,CONV_2_DEEP], stddev=0.1),
collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'WEIGHTS'])
conv_2_b = tf.Variable(tf.constant(0.1, shape=[CONV_2_DEEP]))
conv_2_l = tf.nn.conv2d(pool_1_h, conv_2_w, strides=[1,1,1,1], padding='SAME') + conv_2_b
conv_2_h = tf.nn.relu(conv_2_l)
#池化层2
with tf.name_scope('pool2'):
pool_2_h = tf.nn.max_pool(conv_2_h, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')
#全连接层1
with tf.name_scope('fc1'):
#
fc_1_w = tf.Variable(tf.truncated_normal([7*7*64, 1024], stddev=0.1))
fc_1_b = tf.Variable(tf.constant(0.1, shape=[1024]))
#全连接层的输入为向量,而池化层2的输出为7x7x64的矩阵,所以这里要将矩阵转化成一个向量
pool_2_h_flat = tf.reshape(pool_2_h, [-1,7*7*64])
fc_1_h = tf.nn.relu(tf.matmul(pool_2_h_flat, fc_1_w) + fc_1_b)
#dropout在训练时会随机将部分节点的输出改为0,以避免过拟合问题,从而使得模型在测试数据上的效果更好
#dropout一般只在全连接层而不是卷积层或者池化层使用
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
fc_1_h_drop = tf.nn.dropout(fc_1_h, keep_prob)
#全连接层2 And 输出层
with tf.name_scope('fc2'):
fc_2_w = tf.Variable(tf.truncated_normal([1024,10], stddev=0.1), collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'WEIGHTS'])
fc_2_b = tf.Variable(tf.constant(0.1, shape=[10]))
y = tf.matmul(fc_1_h_drop, fc_2_w) + fc_2_b
#交叉熵
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
#l2正则项
l2_loss = tf.add_n([tf.nn.l2_loss(w) for w in tf.get_collection('WEIGHTS')])
#代价函数 = 交叉熵加上惩罚项
total_loss = cross_entropy + 7e-5*l2_loss
#定义一个Adam优化器
train_step = tf.train.AdamOptimizer(LEARNING_RATE_INIT).minimize(total_loss)
sess = tf.InteractiveSession()
init_op = tf.global_variables_initializer()
sess.run(init_op)
#Train
for step in range(5000):
batch_xs, batch_ys = mnist.train.next_batch(BATCH_SIZE)
_, loss, l2_loss_value, total_loss_value = sess.run(
[train_step, cross_entropy, l2_loss, total_loss],
feed_dict={x: batch_xs, y_:batch_ys, keep_prob:0.5})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) #
if (step+1)%200 == 0:
#每隔200步评估一下训练集和测试集
train_accuracy = accuracy.eval(feed_dict={x:batch_xs, y_:batch_ys, keep_prob:1.0})
test_accuracy = accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0})
print("step:%d, loss:%f, train_acc:%f, test_acc:%f" % (step, total_loss_value, train_accuracy, test_accuracy))
输出:
推荐阅读
-
TensorFlow2利用猫狗数据集(cats_and_dogs_filtered.zip)实现卷积神经网络完成分类任务
-
Keras : 利用卷积神经网络CNN对图像进行分类,以mnist数据集为例建立模型并预测
-
CNN 卷积神经网络实践(基于Mnist数据集)
-
在mnist数据集上训练神经网络(非CNN)
-
Pytorch:卷积神经网络CNN,使用重复元素的网络(VGG)训练MNIST数据集99%以上正确率
-
tensorflow使用卷积神经网络训练mnist数据集代码及结果
-
【深度学习】5:CNN卷积神经网络原理、识别MNIST数据集
-
TensorFlow——CNN卷积神经网络处理Mnist数据集
-
cnn卷积神经网络对cifar数据集实现10分类
-
基于Tensorflow, OpenCV. 使用MNIST数据集训练卷积神经网络模型,用于手写数字识别