欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

利用CNN(卷积神经网络)训练mnist数据集

程序员文章站 2022-03-17 20:56:18
...

本文参考了经典的LeNet-5卷积神经网络模型对mnist数据集进行训练。LeNet-5模型是大神Yann LeCun于1998年在论文"Gradient-based learning applied to document recognition"中提出来的,它是第一个成功应用于数字识别问题的卷积神经网络。下图展示了LeNet-5模型的架构。

利用CNN(卷积神经网络)训练mnist数据集

文中所使用的卷积神经网络结构依次为输入层,卷积层1,池化层1,卷积层2,池化层2,全连接层1,全连接层2,输出层。

"""A very simple MNIST classifier.
See extensive documentation at
https://www.tensorflow.org/get_started/mnist/beginners
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys

from tensorflow.examples.tutorials.mnist import input_data

import numpy as np
import tensorflow as tf
data_dir = './data/'
mnist = input_data.read_data_sets(data_dir, one_hot=True)
#第一层卷积层尺寸和深度
CONV_1_SIZE = 3    
CONV_1_DEEP = 32  
INPUT_CHANNELS = 1 #输入通道数

#第二层卷积层尺寸和深度
CONV_2_SIZE = 3
CONV_2_DEEP = 64

#每批次数据集的大小
BATCH_SIZE = 100

#学习率
LEARNING_RATE_INIT = 1e-3    #学习率初始值
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])

#对输入向量x转换成图像矩阵形式
with tf.variable_scope('reshape'):
    x_image = tf.reshape(x, [-1, 28, 28, 1]) #因为数据的条数未知,所以为-1

#卷积层1
with tf.variable_scope('conv1'):
    initial_value = tf.truncated_normal([CONV_1_SIZE,CONV_1_SIZE,INPUT_CHANNELS,CONV_1_DEEP], stddev=0.1)
    conv_1_w = tf.Variable(initial_value=initial_value, collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'WEIGHTS'])
    conv_1_b = tf.Variable(initial_value=tf.constant(0.1, shape=[CONV_1_DEEP]))
    conv_1_l = tf.nn.conv2d(x_image, conv_1_w, strides=[1,1,1,1], padding='SAME') + conv_1_b
    conv_1_h = tf.nn.relu(conv_1_l)

#池化层1
with tf.variable_scope('pool1'):
    pool_1_h = tf.nn.max_pool(conv_1_h, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')

#卷积层2
with tf.variable_scope('conv2'):
    conv_2_w = tf.Variable(tf.truncated_normal([CONV_2_SIZE,CONV_2_SIZE,CONV_1_DEEP,CONV_2_DEEP], stddev=0.1),
                           collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'WEIGHTS'])
    conv_2_b = tf.Variable(tf.constant(0.1, shape=[CONV_2_DEEP]))
    conv_2_l = tf.nn.conv2d(pool_1_h, conv_2_w, strides=[1,1,1,1], padding='SAME') + conv_2_b
    conv_2_h = tf.nn.relu(conv_2_l)

#池化层2
with tf.name_scope('pool2'):
    pool_2_h = tf.nn.max_pool(conv_2_h, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')

#全连接层1
with tf.name_scope('fc1'):
    #
    fc_1_w = tf.Variable(tf.truncated_normal([7*7*64, 1024], stddev=0.1))
    fc_1_b = tf.Variable(tf.constant(0.1, shape=[1024]))
    #全连接层的输入为向量,而池化层2的输出为7x7x64的矩阵,所以这里要将矩阵转化成一个向量
    pool_2_h_flat = tf.reshape(pool_2_h, [-1,7*7*64])
    fc_1_h = tf.nn.relu(tf.matmul(pool_2_h_flat, fc_1_w) + fc_1_b)
    
#dropout在训练时会随机将部分节点的输出改为0,以避免过拟合问题,从而使得模型在测试数据上的效果更好
#dropout一般只在全连接层而不是卷积层或者池化层使用
with tf.name_scope('dropout'):
    keep_prob = tf.placeholder(tf.float32)
    fc_1_h_drop = tf.nn.dropout(fc_1_h, keep_prob)
    
#全连接层2 And 输出层
with tf.name_scope('fc2'):
    fc_2_w = tf.Variable(tf.truncated_normal([1024,10], stddev=0.1), collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'WEIGHTS'])
    fc_2_b = tf.Variable(tf.constant(0.1, shape=[10]))
    y = tf.matmul(fc_1_h_drop, fc_2_w) + fc_2_b
    
#交叉熵
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))

#l2正则项
l2_loss = tf.add_n([tf.nn.l2_loss(w) for w in tf.get_collection('WEIGHTS')])

#代价函数 = 交叉熵加上惩罚项
total_loss = cross_entropy + 7e-5*l2_loss

#定义一个Adam优化器
train_step = tf.train.AdamOptimizer(LEARNING_RATE_INIT).minimize(total_loss)

sess = tf.InteractiveSession()
init_op = tf.global_variables_initializer()
sess.run(init_op)

#Train
for step in range(5000):
    batch_xs, batch_ys = mnist.train.next_batch(BATCH_SIZE)
    _, loss, l2_loss_value, total_loss_value = sess.run(
        [train_step, cross_entropy, l2_loss, total_loss],
        feed_dict={x: batch_xs, y_:batch_ys, keep_prob:0.5})
    
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) #
    if (step+1)%200 == 0:
        #每隔200步评估一下训练集和测试集
        train_accuracy = accuracy.eval(feed_dict={x:batch_xs, y_:batch_ys, keep_prob:1.0})
        test_accuracy = accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0})
        print("step:%d, loss:%f, train_acc:%f, test_acc:%f" % (step, total_loss_value, train_accuracy, test_accuracy))

输出:

利用CNN(卷积神经网络)训练mnist数据集