欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch:卷积神经网络CNN,使用重复元素的网络(VGG)训练MNIST数据集99%以上正确率

程序员文章站 2022-07-08 09:41:56
...
import torch
from torch import nn
from torch.nn import init
import torchvision
import torchvision.transforms as transforms
import sys
import d2lzh_pytorch as d2l
import time

batch_size=128

trainset = torchvision.datasets.MNIST(root="D:/pythonlearning",train=True, transform=
    transforms.ToTensor(),
    )
testset = torchvision.datasets.MNIST(root="D:/pythonlearning",train=False, transform=
    transforms.ToTensor(),
    )

trainloader = torch.utils.data.DataLoader(dataset=trainset,batch_size=batch_size,shuffle=True)
testloader = torch.utils.data.DataLoader(dataset=testset,batch_size=batch_size,shuffle=True)


lr = 0.003
num_epochs = 20
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.conv = nn.Sequential(
            #28*28-->28
            nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            #28-->14
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),

            #14*14-->14
            nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            #14-->7
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        )
        self.fc = nn.Sequential(
            nn.Linear(32*7*7, 84),
            nn.ReLU(),
            nn.Linear(84, 10)
        )

    def forward(self, x):
        feature = self.conv(x) # x:(batch, 32, 7, 7)
        output = self.fc(feature.view(x.shape[0],-1))# x:(batch, 32*7*7)
        return output

net = Net()
print(net)   

optimizer = torch.optim.Adam(net.parameters(), lr=lr)#Adam算法优化
d2l.train_ch5(net, trainloader, testloader, batch_size, optimizer, device, num_epochs)#训练模型

网络模型:
Pytorch:卷积神经网络CNN,使用重复元素的网络(VGG)训练MNIST数据集99%以上正确率

训练结果:
Pytorch:卷积神经网络CNN,使用重复元素的网络(VGG)训练MNIST数据集99%以上正确率
贴上训练模型函数(d2l包中):

# 该函数已保存在d2lzh_pytorch包中
def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        # 如果没指定device就使用net的device
        device = list(net.parameters())[0].device
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval() # 评估模式, 这会关闭dropout
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train() # 改回训练模式
            else: # 自定义的模型, 3.13节之后不会用到, 不考虑GPU
                if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
            n += y.shape[0]
    return acc_sum / n

# 该函数已保存在d2lzh_pytorch包中
def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    loss = torch.nn.CrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))