TensorFlow2利用Cifar10数据集实现卷积神经网络
程序员文章站
2022-03-17 20:56:36
...
1. 导入所需的库
import tensorflow as tf
import matplotlib.pyplot as plt
for i in [tf]:
print(i.__name__,": ",i.__version__,sep="")
输出:
tensorflow: 2.2.0
2. 下载并导入数据cifar10数据集
(train_images, train_labels),(test_images, test_labels) = tf.keras.datasets.cifar10.load_data()
train_images, test_images = train_images/255.0, test_images/255.0
for i in [train_images, train_labels, test_images, test_labels]:
print(i.shape)
输出:
(50000, 32, 32, 3)
(50000, 1)
(10000, 32, 32, 3)
(10000, 1)
3. 展示数据
class_names = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"]
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i],cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i][0]])
plt.show()
输出:
4. 构建网络模型
将一定数量的卷积层和池化层堆叠在一起,最后加上全连接层,就形成了经典的卷积神经网络。
注意:卷积神经网络的输入格式为:[batch_size, height, width, channels]
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32,(3,3),activation="relu",input_shape=(32,32,3)))
model.add(tf.keras.layers.MaxPooling2D((2,2)))
model.add(tf.keras.layers.Conv2D(64,(3,3),activation="relu"))
model.add(tf.keras.layers.MaxPooling2D((2,2)))
model.add(tf.keras.layers.Conv2D(64,(3,3),activation="relu"))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation="relu"))
model.add(tf.keras.layers.Dense(10))
model.summary()
输出:
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 30, 30, 32) 896
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 13, 13, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 4, 4, 64) 36928
_________________________________________________________________
flatten (Flatten) (None, 1024) 0
_________________________________________________________________
dense (Dense) (None, 64) 65600
_________________________________________________________________
dense_1 (Dense) (None, 10) 650
=================================================================
Total params: 122,570
Trainable params: 122,570
Non-trainable params: 0
_________________________________________________________________
5. 编译并训练模型
model.compile(optimizer="adam",
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy"])
history = model.fit(train_images, train_labels, epochs=20,
validation_data=(test_images, test_labels))
输出:
Epoch 1/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.5518 - accuracy: 0.8050 - val_loss: 0.9361 - val_accuracy: 0.7016
Epoch 2/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.5153 - accuracy: 0.8189 - val_loss: 0.9369 - val_accuracy: 0.7082
Epoch 3/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.4857 - accuracy: 0.8282 - val_loss: 0.9817 - val_accuracy: 0.7086
Epoch 4/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.4478 - accuracy: 0.8412 - val_loss: 1.0160 - val_accuracy: 0.7084
Epoch 5/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.4194 - accuracy: 0.8496 - val_loss: 1.0763 - val_accuracy: 0.6965
Epoch 6/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.3917 - accuracy: 0.8594 - val_loss: 1.1418 - val_accuracy: 0.6911
Epoch 7/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.3643 - accuracy: 0.8701 - val_loss: 1.1781 - val_accuracy: 0.6978
Epoch 8/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.3469 - accuracy: 0.8761 - val_loss: 1.2179 - val_accuracy: 0.6875
Epoch 9/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.3228 - accuracy: 0.8845 - val_loss: 1.2916 - val_accuracy: 0.6938
Epoch 10/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.3012 - accuracy: 0.8906 - val_loss: 1.3111 - val_accuracy: 0.6903
Epoch 11/20
1563/1563 [==============================] - 7s 5ms/step - loss: 0.2833 - accuracy: 0.8979 - val_loss: 1.3923 - val_accuracy: 0.6916
Epoch 12/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2600 - accuracy: 0.9057 - val_loss: 1.4629 - val_accuracy: 0.6849
Epoch 13/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2488 - accuracy: 0.9084 - val_loss: 1.5491 - val_accuracy: 0.6860
Epoch 14/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2367 - accuracy: 0.9132 - val_loss: 1.5958 - val_accuracy: 0.6779
Epoch 15/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2197 - accuracy: 0.9207 - val_loss: 1.5827 - val_accuracy: 0.6848
Epoch 16/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2120 - accuracy: 0.9240 - val_loss: 1.7106 - val_accuracy: 0.6784
Epoch 17/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.2015 - accuracy: 0.9275 - val_loss: 1.7326 - val_accuracy: 0.6799
Epoch 18/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1852 - accuracy: 0.9324 - val_loss: 1.8658 - val_accuracy: 0.6809
Epoch 19/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1849 - accuracy: 0.9322 - val_loss: 2.0047 - val_accuracy: 0.6689
Epoch 20/20
1563/1563 [==============================] - 8s 5ms/step - loss: 0.1734 - accuracy: 0.9380 - val_loss: 1.9625 - val_accuracy: 0.6820
6. 评估模型
plt.plot(history.history["accuracy"], label="accuracy")
plt.plot(history.history["val_accuracy"],label="val_accuracy")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.ylim([0.0,1])
plt.legend()
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
输出:
313/313 - 1s - loss: 1.9625 - accuracy: 0.6820
print(test_acc)
输出:
0.6865000128746033
推荐阅读
-
TensorFlow2利用猫狗数据集(cats_and_dogs_filtered.zip)实现卷积神经网络完成分类任务
-
Keras : 利用卷积神经网络CNN对图像进行分类,以mnist数据集为例建立模型并预测
-
TensorFlow2利用Auto-MPG数据集实现神经网络回归任务
-
cnn卷积神经网络对cifar数据集实现10分类
-
4用于cifar10的卷积神经网络-4.4/4.5cifar10数据集读取和数据增强扩充(上/下)
-
TensorFlow深度学习进阶教程:TensorFlow实现CIFAR-10数据集测试的卷积神经网络
-
TensorFlow卷积神经网络MNIST数据集实现示例
-
搭建卷积神经网络 Demo - 实现Cifar-10数据集分类
-
Tensorflow实战——5.实现卷积神经网络——cifar10数据集的加载
-
TensorFlow2利用Cifar10数据集实现卷积神经网络