PAT(Advanced) 1053 Path of Equal Weight(30 分)
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N≤100, the number of nodes in a tree, M (<N), the number of non-leaf nodes, and 0<S<230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID
is a two-digit number representing a given non-leaf node, K
is the number of its children, followed by a sequence of two-digit ID
's of its children. For the sake of simplicity, let us fix the root ID to be 00
.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1,A2,⋯,An} is said to be greater than sequence {B1,B2,⋯,Bm} if there exists 1≤k<min{n,m} such that Ai=Bi for i=1,⋯,k, and Ak+1>Bk+1.
解答:
该题可以直接用dfs求解,在找到符合条件的叶节点时,便将它保存下来。
那么如何求其路径呢,那么我们可以用一个数组来保存一个节点的父节点, 即tree[i] = j; 那么节点 i 的父节点就是 j 。然后通过递归来求路径,思路比较清晰;
那么如何对路径进行排序呢?这时我们可以在保存路径时,对一个根的子树按权值排序,这样,我们用dfs遍历时,便会先访问权值高的节点,这样就不需要另外排序啦。
---------------------------------------------------------------------------------------------
今天,我在博客 1053. Path of Equal Weight (30)-PAT甲级真题(树的遍历)中找到了一个输出路径的更简洁的方法,时间效率其实大致相同。就是每次遍历时,都保存下当前的节点,并记录当前是第几个节点,这样便可以愉快地输出路径了。代码见下。
学无止境,加油!
AC代码如下:
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#define maxn 105
using namespace std;
int n, m, s;
vector<int> weights;
int tree[maxn]; //保存第i个节点的父亲
vector<int> e[maxn];
vector<int> paths; //记录符合条件的叶节点
void dfs(int v, int w)
{
if(e[v].size() == 0 && w == s){
paths.push_back(v);
}
for(int i = 0; i < e[v].size(); ++i)
{
int node = e[v][i];
dfs(node, w + weights[node]);
}
}
void print(int v)
{
if(v == 0)
{
printf("%d", weights[v]);
return;
}
print(tree[v]);
printf(" %d", weights[v]);
}
bool cmp(int v1, int v2)
{
return weights[v1] > weights[v2];
}
int main()
{
scanf("%d %d %d", &n, &m, &s);
for(int i = 0; i < n; ++i)
{
int weight;
scanf("%d", &weight);
weights.push_back(weight);
}
for(int i = 0; i < m; ++i)
{
int v, nc;
scanf("%d %d", &v, &nc);
for(int j = 1; j <= nc; ++j)
{
int child;
scanf("%d", &child);
e[v].push_back(child);
tree[child] = v;
}
//对边按权值从大到小排序,这样可以保证输出有序
sort(e[v].begin(), e[v].end(), cmp);
}
dfs(00, weights[0]);
for(int i = 0; i < paths.size(); ++i)
{
print(paths[i]);
printf("\n");
}
return 0;
}
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#define maxn 105
using namespace std;
int n, m, s;
vector<int> weights;
int tree[maxn]; //保存第i个节点的父亲
vector<int> e[maxn];
vector<int> path(maxn); //记录符合条件的叶节点
void dfs(int v, int num, int w)
{
if(e[v].size() == 0 && w == s){
for(int i = 0; i < num; ++i)
{
printf("%d%c", weights[path[i]], i != num-1 ? ' ' : '\n');
}
return;
}
for(int i = 0; i < e[v].size(); ++i)
{
int node = e[v][i];
path[num] = node;
dfs(node, num+1, w + weights[node]);
}
}
bool cmp(int v1, int v2)
{
return weights[v1] > weights[v2];
}
int main()
{
scanf("%d %d %d", &n, &m, &s);
for(int i = 0; i < n; ++i)
{
int weight;
scanf("%d", &weight);
weights.push_back(weight);
}
for(int i = 0; i < m; ++i)
{
int v, nc;
scanf("%d %d", &v, &nc);
for(int j = 1; j <= nc; ++j)
{
int child;
scanf("%d", &child);
e[v].push_back(child);
tree[child] = v;
}
//对边按权值从大到小排序,这样可以保证输出有序
sort(e[v].begin(), e[v].end(), cmp);
}
path[0] = 0;
dfs(00, 1, weights[0]);
return 0;
}
上一篇: 50、扰乱字符串(dp思路没有看懂)
下一篇: php模式设计之 适配器模式
推荐阅读
-
PAT A1053:Path of Equal Weight
-
(pat)A1053 Path of Equal Weight
-
PAT A1053 Path of Equal Weight(30 分)
-
PAT A1053 Path of Equal Weight (30分)
-
PAT甲级——A1053 Path of Equal Weight【30】
-
PAT甲级——A1053 Path of Equal Weight
-
1053 Path of Equal Weight (30 分)
-
1053 Path of Equal Weight (30 分)
-
1053 Path of Equal Weight (30 分)
-
1053 Path of Equal Weight (30分)