pandas如何使用列表和字典创建 Series
前言:
pandas
纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas
提供了大量能使我们快速便捷地处理数据的函数和方法。
为了让大家对pandas
的操作更加熟练,我整理了一些关于pandas
的小操作,会依次为大家展示
今天我将先为大家如何关于pandas
如何使用列表和字典创建 series
。
01 使用列表创建 series
import pandas as pd ser1 = pd.series([1.5, 2.5, 3, 4.5, 5.0, 6]) print(ser1)
output:
0 1.5
1 2.5
2 3.0
3 4.5
4 5.0
5 6.0
dtype: float64
02 使用 name 参数创建 series
import pandas as pd ser2 = pd.series(["india", "canada", "germany"], name="countries") print(ser2)
output:
0 india
1 canada
2 germany
name: countries, dtype: object
03 使用简写的列表创建 series
import pandas as pd ser3 = pd.series(["a"]*4) print(ser3)
output:
0 a
1 a
2 a
3 a
dtype: object
04 使用字典创建 series
import pandas as pd ser4 = pd.series({"india": "new delhi", "japan": "tokyo", "uk": "london"}) print(ser4)
output:
india new delhi
japan tokyo
uk london
dtype: object
05 如何使用 numpy 函数创建 series
import pandas as pd import numpy as np ser1 = pd.series(np.linspace(1, 10, 5)) print(ser1) ser2 = pd.series(np.random.normal(size=5)) print(ser2)
output:
0 1.00
1 3.25
2 5.50
3 7.75
4 10.00
dtype: float64
0 -1.694452
1 -1.570006
2 1.713794
3 0.338292
4 0.803511
dtype: float64
06 如何获取 series 的索引和值
import pandas as pd import numpy as np ser1 = pd.series({"india": "new delhi", "japan": "tokyo", "uk": "london"}) print(ser1.values) print(ser1.index) print("\n") ser2 = pd.series(np.random.normal(size=5)) print(ser2.index) print(ser2.values)
output:
['new delhi' 'tokyo' 'london']
index(['india', 'japan', 'uk'], dtype='object')
rangeindex(start=0, stop=5, step=1)
[ 0.66265478 -0.72222211 0.3608642 1.40955436 1.3096732 ]
07 如何在创建 series 时指定索引
import pandas as pd values = ["india", "canada", "australia", "japan", "germany", "france"] code = ["ind", "can", "aus", "jap", "ger", "fra"] ser1 = pd.series(values, index=code) print(ser1)
output:
ind india
can canada
aus australia
jap japan
ger germany
fra france
dtype: object
08 如何获取 series 的大小和形状
import pandas as pd values = ["india", "canada", "australia", "japan", "germany", "france"] code = ["ind", "can", "aus", "jap", "ger", "fra"] ser1 = pd.series(values, index=code) print(len(ser1)) print(ser1.shape) print(ser1.size)
output:
6
(6,)
6
09 如何获取 series 开始或末尾几行数据
head()函数:
import pandas as pd values = ["india", "canada", "australia", "japan", "germany", "france"] code = ["ind", "can", "aus", "jap", "ger", "fra"] ser1 = pd.series(values, index=code) print("-----head()-----") print(ser1.head()) print("\n\n-----head(2)-----") print(ser1.head(2))
output:
-----head()-----
ind india
can canada
aus australia
jap japan
ger germany
dtype: object
-----head(2)-----
ind india
can canada
dtype: object
tail()函数:
import pandas as pd values = ["india", "canada", "australia", "japan", "germany", "france"] code = ["ind", "can", "aus", "jap", "ger", "fra"] ser1 = pd.series(values, index=code) print("-----tail()-----") print(ser1.tail()) print("\n\n-----tail(2)-----") print(ser1.tail(2))
output:
-----tail()-----
can canada
aus australia
jap japan
ger germany
fra france
dtype: object
-----tail(2)-----
ger germany
fra france
dtype: object
take()函数:
import pandas as pd values = ["india", "canada", "australia", "japan", "germany", "france"] code = ["ind", "can", "aus", "jap", "ger", "fra"] ser1 = pd.series(values, index=code) print("-----take()-----") print(ser1.take([2, 4, 5]))
output:
-----take()-----
aus australia
ger germany
fra france
dtype: object
10 使用切片获取 series 子集
import pandas as pd num = [000, 100, 200, 300, 400, 500, 600, 700, 800, 900] idx = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] series = pd.series(num, index=idx) print("\n [2:2] \n") print(series[2:4]) print("\n [1:6:2] \n") print(series[1:6:2]) print("\n [:6] \n") print(series[:6]) print("\n [4:] \n") print(series[4:]) print("\n [:4:2] \n") print(series[:4:2]) print("\n [4::2] \n") print(series[4::2]) print("\n [::-1] \n") print(series[::-1])
output:
[2:2]
c 200
d 300
dtype: int64
[1:6:2]
b 100
d 300
f 500
dtype: int64
[:6]
a 0
b 100
c 200
d 300
e 400
f 500
dtype: int64
[4:]
e 400
f 500
g 600
h 700
i 800
j 900
dtype: int64
[:4:2]
a 0
c 200
dtype: int64
[4::2]
e 400
g 600
i 800
dtype: int64
[::-1]
j 900
i 800
h 700
g 600
f 500
e 400
d 300
c 200
b 100
a 0
dtype: int64
到此这篇关于pandas如何使用列表和字典创建 series的文章就介绍到这了,更多相关pandas使用列表和字典创建 series内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!