欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

pytorch实战yolov5

程序员文章站 2023-11-29 11:03:40
结构data +Annotations +images +ImageSets ++Main +labels修改data下面的yaml文件修改model下面的对应的模型文件运行maketxt.pyimport os import random val_percent = 0.1 #验证集(实际为 0.9*0.1)train_percent = 0.9 #训练集 测试集为1-0.9xmlfilepath = 'Annotations' txtsav...

结构

data
  +Annotations
  +images
  +ImageSets
    ++Main
  +labels

pytorch实战yolov5
修改data下面的yaml文件
pytorch实战yolov5
修改model下面的对应的模型文件
pytorch实战yolov5
运行maketxt.py

import os  
import random  
  
val_percent = 0.1 #验证集(实际为 0.9*0.1)
train_percent = 0.9 #训练集 测试集为1-0.9
xmlfilepath = 'Annotations'  
txtsavepath = 'ImageSets\Main'  
total_xml = os.listdir(xmlfilepath)  
  
num=len(total_xml)  
list=range(num)  
tr=int(num*train_percent)  
tv=int(tr*val_percent)  
train= random.sample(list,tr)  
val=random.sample(train,tv)  
  
ftest = open('ImageSets/Main/test.txt', 'w')  
ftrain = open('ImageSets/Main/train.txt', 'w')  
fval = open('ImageSets/Main/val.txt', 'w')  
  
for i  in list:  
    name=total_xml[i][:-4]+'\n'  
    if i in train:  
        ftrain.write(name) 
        if i in val:   
            fval.write(name) 
    else:   
        ftest.write(name)  
  
ftrain.close()  
fval.close()  
ftest.close()

运行voc_label.py

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
 
sets = ['train', 'test','val']
 
classes = ["persion"]#我们只是检测人,因此只有一个类别
 
 
def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)
 
 
def convert_annotation(image_id):
    in_file = open('data/Annotations/%s.xml' % (image_id),"r", encoding='UTF-8')
    out_file = open('data/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
 
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
 
 
wd = getcwd()
print(wd)
for image_set in sets:
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    image_ids = open('data/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write('data/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

训练

python train.py --data data/persion.yaml --cfg models/yolov5x.yaml --batch-size 16 --epochs 300

本文地址:https://blog.csdn.net/qq_26696715/article/details/107074045