pytorch实战yolov5
程序员文章站
2023-11-29 11:03:40
结构data +Annotations +images +ImageSets ++Main +labels修改data下面的yaml文件修改model下面的对应的模型文件运行maketxt.pyimport os import random val_percent = 0.1 #验证集(实际为 0.9*0.1)train_percent = 0.9 #训练集 测试集为1-0.9xmlfilepath = 'Annotations' txtsav...
结构
data
+Annotations
+images
+ImageSets
++Main
+labels
修改data下面的yaml文件
修改model下面的对应的模型文件
运行maketxt.py
import os
import random
val_percent = 0.1 #验证集(实际为 0.9*0.1)
train_percent = 0.9 #训练集 测试集为1-0.9
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)
num=len(total_xml)
list=range(num)
tr=int(num*train_percent)
tv=int(tr*val_percent)
train= random.sample(list,tr)
val=random.sample(train,tv)
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')
for i in list:
name=total_xml[i][:-4]+'\n'
if i in train:
ftrain.write(name)
if i in val:
fval.write(name)
else:
ftest.write(name)
ftrain.close()
fval.close()
ftest.close()
运行voc_label.py
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train', 'test','val']
classes = ["persion"]#我们只是检测人,因此只有一个类别
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('data/Annotations/%s.xml' % (image_id),"r", encoding='UTF-8')
out_file = open('data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
image_ids = open('data/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
list_file = open('data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('data/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
训练
python train.py --data data/persion.yaml --cfg models/yolov5x.yaml --batch-size 16 --epochs 300
本文地址:https://blog.csdn.net/qq_26696715/article/details/107074045
上一篇: 如何使用Airtest测试中文字识别