orb特征描述符 打开相机与图片物体匹配
程序员文章站
2022-03-16 20:58:48
...
//---------------------------------【头文件、命名空间包含部分】----------------------------
// 描述:包含程序所使用的头文件和命名空间
//------------------------------------------------------------------------------------------------
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/features2d/features2d.hpp>
using namespace cv;
using namespace std;
//--------------------------------------【main( )函数】-----------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-----------------------------------------------------------------------------------------------
int main()
{
//【0】载入源图,显示并转化为灰度图
Mat srcImage = imread("1.jpg");
if (!srcImage.data)
{
cout << "there is no picture" << endl;
getchar();
return false;
}
imshow("原始图", srcImage);
Mat grayImage;
cvtColor(srcImage, grayImage, CV_BGR2GRAY);
//------------------检测SIFT特征点并在图像中提取物体的描述符----------------------
//【1】参数定义
OrbFeatureDetector featureDetector;
vector<KeyPoint> keyPoints;
Mat descriptors;
//【2】调用detect函数检测出特征关键点,保存在vector容器中
featureDetector.detect(grayImage, keyPoints);
//【3】计算描述符(特征向量)
OrbDescriptorExtractor featureExtractor;
featureExtractor.compute(grayImage, keyPoints, descriptors);
//【4】基于FLANN的描述符对象匹配
flann::Index flannIndex(descriptors, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING);
//【5】初始化视频采集对象
VideoCapture cap(0);
unsigned int frameCount = 0;//帧数
//【6】轮询,直到按下ESC键退出循环
while (1)
{
double time0 = static_cast<double>(getTickCount());//记录起始时间
Mat captureImage, captureImage_gray;//定义两个Mat变量,用于视频采集
cap >> captureImage;//采集视频帧
if (captureImage.empty())//采集为空的处理
{
cout << "cannot open camera" << endl;
continue;
}
//转化图像到灰度
cvtColor(captureImage, captureImage_gray, CV_BGR2GRAY);//采集的视频帧转化为灰度图
//【7】检测SIFT关键点并提取测试图像中的描述符
vector<KeyPoint> captureKeyPoints;
Mat captureDescription;
//【8】调用detect函数检测出特征关键点,保存在vector容器中
featureDetector.detect(captureImage_gray, captureKeyPoints);
//【9】计算描述符
featureExtractor.compute(captureImage_gray, captureKeyPoints, captureDescription);
//【10】匹配和测试描述符,获取两个最邻近的描述符
Mat matchIndex(captureDescription.rows, 2, CV_32SC1), matchDistance(captureDescription.rows, 2, CV_32FC1);
flannIndex.knnSearch(captureDescription, matchIndex, matchDistance, 2, flann::SearchParams());//调用K邻近算法
//【11】根据劳氏算法(Lowe's algorithm)选出优秀的匹配
vector<DMatch> goodMatches;
for (int i = 0; i < matchDistance.rows; i++)
{
if (matchDistance.at<float>(i, 0) < 0.6 * matchDistance.at<float>(i, 1))
{
DMatch dmatches(i, matchIndex.at<int>(i, 0), matchDistance.at<float>(i, 0));
goodMatches.push_back(dmatches);
}
}
//【12】绘制并显示匹配窗口
Mat resultImage;
drawMatches(captureImage, captureKeyPoints, srcImage, keyPoints, goodMatches, resultImage);
imshow("匹配窗口", resultImage);
//【13】显示帧率
cout << ">帧率= " << getTickFrequency() / (getTickCount() - time0) << endl;
//按下ESC键,则程序退出
if (char(waitKey(1)) == 27) break;
}
return 0;
}
上一篇: javascript文档对象模型是树型吗
下一篇: 深入了解CSS和网络性能