orb特征描述符 物体匹配
程序员文章站
2022-03-16 21:41:41
...
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>
using namespace cv;
using namespace std;
/********************************************************************************************************
函数描述:
计算图像中的ORB特征及其特征点的匹配
*********************************************************************************************************/
void colorReduce(Mat& inputImage, Mat& outputImage, int div)
{
//参数准备
outputImage = inputImage.clone(); //拷贝实参到临时变量
int rowNumber = outputImage.rows; //行数
int colNumber = outputImage.cols*outputImage.channels(); //列数 x 通道数=每一行元素的个数
//双重循环,遍历所有的像素值
for (int i = 0; i < rowNumber; i++) //行循环
{
uchar* data = outputImage.ptr<uchar>(i); //获取第i行的首地址
for (int j = 0; j < colNumber; j++) //列循环
{
// ---------【开始处理每个像素】-------------
data[j] = data[j] / div*div + div / 2;
// ----------【处理结束】---------------------
} //行处理结束
}
}
void split_orb(Mat &sorse, vector<KeyPoint>&orb_vec)
{
ORB orb(/*int nfeatures = */30,/* float scaleFactor = */2.0f,/* int nlevels = */8,/* int edgeThreshold = */31,
/*int firstLevel = */0,/* int WTA_K = */2,/* int scoreType = */ORB::HARRIS_SCORE,/* int patchSize = */31);
if (sorse.data == NULL)
{
cout << "no data";
return;
}
for (int i = 0; i < sorse.cols; i += 100)
{
if (i + 100 >= sorse.cols)continue;
for (int j = 0; j < sorse.rows; j += 100)
{
vector<KeyPoint>temp_vec;
if (j + 100 >= sorse.rows)continue;
Mat temp(sorse, Rect(i, j, 100, 100));
orb(temp, Mat(), temp_vec);
for (int f = 0; f < temp_vec.size(); f++)
{
temp_vec[f].pt.x += i;
temp_vec[f].pt.y += j;
orb_vec.push_back(temp_vec[f]);
}
}
}
}
void ORBdetect(Mat& image, std::vector<cv::KeyPoint>& keyPoints)
{
Mat orbImage;
ORB orb;
Mat outputImage = image.clone(); //拷贝实参到临时变量
int rowNumber = outputImage.rows; //行数
int colNumber = outputImage.cols/**outputImage.channels()*/; //列数 x 通道数=每一行元素的个数
//Mat mLeftView = m_mView(cv::Rect(0, 0, 640, 480));
//双重循环,遍历所有的像素值
for (int i = 0; i < rowNumber; i += 100) //行循环
{
if (i + 100 >= rowNumber) continue/*i = rowNumber - 100*/;
for (int j = 0; j < colNumber; j += 100) //列循环
{
if (j + 100 >= colNumber) continue/*j = colNumber - 100*/;
//Mat mLeftView = outputImage(cv::Rect(i, j, 100, 100));
Mat mLeftView(outputImage, cv::Rect(i, j, 100, 100));
//orb.operator()(mLeftView, Mat(), keyPoints1, orbImage);
std::vector<cv::KeyPoint> keyPoints1;
orb(mLeftView, Mat(), keyPoints1);
for (int k = 0; k < keyPoints1.size(); k++)
{
keyPoints1[k].pt.x += i;
keyPoints1[k].pt.y += j;
keyPoints.push_back(keyPoints1[k]);
}
} //行处理结束
}
}
bool cacORBFeatureAndCompare(cv::Mat srcImg_1, cv::Mat srcImg_2)
{
//【1】图像中ORB关键点的检测
std::vector<cv::KeyPoint> keyPoints_1;
std::vector<cv::KeyPoint> keyPoints_2;
std::vector<cv::KeyPoint> keyPoints_3;
cv::ORB orb;
cv::Mat descriptorMat_1; //【1】图像1的特征点描述子
orb.operator()(srcImg_1, Mat(), keyPoints_1, descriptorMat_1);
//orb.detect(srcImg_1, keyPoints_1); //【1】图像1中ORB关键点的检测
//orb.detect(srcImg_2, keyPoints_2); //【2】图像2中ORB关键点的检测
//ORBdetect(srcImg_2, keyPoints_2);
split_orb(srcImg_2, keyPoints_2);
//【2】计算特征向量(特征点的描述子)
//cv::Mat descriptorMat_1; //【1】图像1的特征点描述子
cv::Mat descriptorMat_2; //【2】图像1的特征点描述子
//orb.compute(srcImg_1, keyPoints_1, descriptorMat_1); //【1】计算图像1的特征向量
orb.compute(srcImg_2, keyPoints_2, descriptorMat_2); //【2】计算图像2的特征向量
//【3】特征点的匹配
cv::BFMatcher matcher(NORM_HAMMING);
std::vector<DMatch> matches;
matcher.match(descriptorMat_1, descriptorMat_2, matches);
//【4】绘制匹配点集
cv::Mat matchMat;
cv::drawMatches(srcImg_1, keyPoints_1, srcImg_2, keyPoints_2, matches, matchMat);
Mat srcI;
cv::drawKeypoints(srcImg_1, keyPoints_1, srcI, cvScalar(0,0,255));
cv::imshow("src1", srcI);
cv::imshow("matchMat", matchMat);
cv::waitKey(0);
return true;
}
//int main17063000(int argc, char** argv)
int main(int argc, char** argv)
{
cv::Mat srcImg_1 = imread("4.jpg");
if (srcImg_1.empty())
{
std::cout << "【NOTICE】NO valid inout image_1 was given,please check the inoput image! " << std::endl;
std::system("pause");
return -1;
}
cv::Mat srcImg_2 = imread("5.jpg");
if (srcImg_1.empty())
{
std::cout << "【NOTICE】NO valid inout image_2 was given,please check the inoput image! " << std::endl;
std::system("pause");
return -1;
}
//ORB特征点的检测和匹配
cacORBFeatureAndCompare(srcImg_1, srcImg_2);
return 0;
}
上一篇: 帧同步之帧编号与玩家事件采集