欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

对Tensorflow中的矩阵运算函数详解

程序员文章站 2023-09-04 16:10:40
tf.diag(diagonal,name=None) #生成对角矩阵 import tensorflowas tf; diagonal=[1,1,1,1]...

tf.diag(diagonal,name=None) #生成对角矩阵

import tensorflowas tf;
diagonal=[1,1,1,1]
with tf.Session() as sess:
  print(sess.run(tf.diag(diagonal))) 
 #输出的结果为[[1 0 0 0]
    [0 1 0 0]
    [0 0 1 0]
    [0 0 0 1]]

tf.diag_part(input,name=None) #功能与tf.diag函数相反,返回对角阵的对角元素

import tensorflow as tf;
diagonal =tf.constant([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
with tf.Session() as sess:
 print(sess.run(tf.diag_part(diagonal)))
#输出结果为[1,1,1,1]

tf.trace(x,name=None) #求一个2维Tensor足迹,即为对角值diagonal之和

import tensorflow as tf;
diagonal =tf.constant([[1,0,0,3],[0,1,2,0],[0,1,1,0],[1,0,0,1]])
with tf.Session() as sess:
 print(sess.run(tf.trace(diagonal)))#输出结果为4

tf.transpose(a,perm=None,name='transpose') #调换tensor的维度顺序,按照列表perm的维度排列调换tensor的顺序

import tensorflow as tf;
diagonal =tf.constant([[1,0,0,3],[0,1,2,0],[0,1,1,0],[1,0,0,1]])
with tf.Session() as sess:
 print(sess.run(tf.transpose(diagonal))) #输出结果为[[1 0 0 1]
                             [0 1 1 0]
                             [0 2 1 0]
                             [3 0 0 1]]

tf.matmul(a,b,transpose_a=False,transpose_b=False,a_is_sparse=False,b_is_sparse=False,name=None) #矩阵相乘

transpose_a=False,transpose_b=False #运算前是否转置

a_is_sparse=False,b_is_sparse=False #a,b是否当作系数矩阵进行运算

import tensorflow as tf;
A =tf.constant([1,0,0,3],shape=[2,2])
B =tf.constant([2,1,0,2],shape=[2,2])
with tf.Session() as sess:
 print(sess.run(tf.matmul(A,B)))
#输出结果为[[2 1]
   [0 6]]

tf.matrix_determinant(input,name=None) #计算行列式

import tensorflow as tf;
A =tf.constant([1,0,0,3],shape=[2,2],dtype=tf.float32)
with tf.Session() as sess:
 print(sess.run(tf.matrix_determinant(A))) 
#输出结果为3.0

tf.matrix_inverse(input,adjoint=None,name=None)

adjoint决定计算前是否进行转置

import tensorflow as tf;
A =tf.constant([1,0,0,2],shape=[2,2],dtype=tf.float64)
with tf.Session() as sess:
 print(sess.run(tf.matrix_inverse(A)))
#输出结果为[[ 1. 0. ]
   [ 0. 0.5]]

tf.cholesky(input,name=None) #对输入方阵cholesky分解,即为将一个对称正定矩阵表示成一个下三角矩阵L和其转置的乘积德分解

import tensorflow as tf;
A =tf.constant([1,0,0,2],shape=[2,2],dtype=tf.float64)
with tf.Session() as sess:
 print(sess.run(tf.cholesky(A)))
#输出结果为[[ 1.   0.  ]
   [ 0.   1.41421356]]

以上这篇对Tensorflow中的矩阵运算函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。