Python|一文简单看懂 深度&广度 优先算法
一、前言
以后尽量每天更新一篇,也是自己的一个学习打卡!加油!今天给大家分享的是,python里深度/广度优先算法介绍及实现。
二、深度、广度优先算法简介
1. 深度优先搜索(depthfirstsearch)
深度优先搜索的主要特征就是,假设一个顶点有不少相邻顶点,当我们搜索到该顶点,我们对于它的相邻顶点并不是现在就对所有都进行搜索,而是对一个顶点继续往后搜索,直到某个顶点,他周围的相邻顶点都已经被访问过了,这时他就可以返回,对它来的那个顶点的其余顶点进行搜索。
深度优先搜索的实现可以利用递归很简单地实现。
2. 广度优先搜索(breadthfirstsearch)
广度优先搜索相对于深度优先搜索侧重点不一样,深度优先好比是一个人走迷宫,一次只能选定一条路走下去,而广度优先搜索好比是一次能够有任意多个人,一次就走到和一个顶点相连的所有未访问过的顶点,然后再从这些顶点出发,继续这个过程。
具体实现的时候我们使用先进先出队列来实现这个过程:
1. 首先将起点加入队列,然后将其出队,把和起点相连的顶点加入队列
2. 将队首元素v出队并标记他
3. 将和v相连的未标记的元素加入队列,然后继续执行步骤2直到队列为空
广度优先搜索的一个重要作用就是它能够找出最短路径,这个很好理解,因为广度优先搜索相当于每次从一个起点开始向所有可能的方向走一步,那么第一次到达目的地的这个路径一定是最短的,而到达了之后由于这个点已经被访问过而不会再被访问,这个路径就不会被更改了。
三、看代码,边学边敲边记深度优先、广度优先算法
1. 遍历二叉树图形
2. 深度优先、广度优先遍历模型
3. 数据结构设计、遍历代码
方法一:列表法
方法二:构造类节点法
四、后言
可能大家会好奇,深度优先算法、广度优先算法对爬虫有什么用,不用好奇,慢慢后面就会懂得了。
提前透露:几乎所有网站都有首页、xxx、xxx、xxx…在每个分页下,又有很多分页,这样所有url之间的联系实际上就可以比喻成一棵树,当我们想要系统爬取时,为了不重复爬取,对这颗树的遍历就尤为重要了。
这里说到的深度优先、广度优先为最常用的遍历算法。
上一篇: 约瑟夫环
下一篇: 不想挽回太卑微,试试这几个方法!
推荐阅读
-
Python|一文简单看懂 深度&广度 优先算法
-
Python数据结构与算法之图的广度优先与深度优先搜索算法示例
-
python实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法及Dijkstra最短路径应用
-
数据结构与算法1:二叉树(binary_tree)的前、中、后序(深度优先)和广度优先遍历及python代码实现
-
Python|一文简单看懂 深度&广度 优先算法
-
图的数据结构及深度优先、广度优先、最短路径算法python实现
-
Python实现 宽度/广度优先搜索算法, 深度优先搜索算法
-
python 递归深度优先搜索与广度优先搜索算法模拟实现
-
Python数据结构与算法之图的广度优先与深度优先搜索算法示例
-
【11】python 递归,深度优先搜索与广度优先搜索算法模拟实现