欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

吃透 | Elasticsearch filter和query的不同

程序员文章站 2022-03-15 17:08:13
...

1、query和filter的本质区别?

以下几张图能更好的概括: 
吃透 | Elasticsearch filter和query的不同
query关注点:此文档与此查询子句的匹配程度如何?

filter关注点:此文档和查询子句匹配吗?

2、Query检索细化关注点

吃透 | Elasticsearch filter和query的不同

1)是否包含?

确定文档是否应该成为结果的一部分.

2)相关度得分多少?

除了确定文档是否匹配外,查询子句还计算了表示文档与其他文档相比匹配程度的_score。

3)得分越高,相关度越高。

更相关的文件,在搜索排名更高。

典型应用场景:

1)全文检索——这种相关性的概念非常适合全文搜索,因为很少有完全“正确”的答案。

举例如下:

文档中存在字段hotel_name:“上海浦东香格里拉酒店”

IK实际分词结果如下: 
上海浦东,上海,浦东,香格里拉,格里,里拉,酒店。

也就是说,搜索以上关键词都能搜到:hotel_name:“上海浦东香格里拉酒店”的酒店。这些都是“相关”的。

但是搜索:“香格里” 是搜索不到结果的。

2)包含单词“run”, 但也匹配”runs”, “running”, “jog”或者”sprint”。(都是奔跑的意思)

3、filter过滤细化关注点

吃透 | Elasticsearch filter和query的不同
1)是否包含?

确定是否包含在检索结果中,回答只有“是”或“否”。

2)不涉及评分。

在搜索中没有额外的相关度排名。

3)针对结构化数据。

适用于完全精确匹配,范围检索。

参见官网举例: 
以下场景适用于filter过滤检索:

举例1:时间戳timestamp 是否在2015至2016年范围内?

举例2:状态字段status 是否设置为“published”?

4)更快

只确定是否包括结果中,不需要考虑得分。

为什么会更快?——经常使用的过滤器将被Elasticsearch自动缓存,以提高性能。

4、query和filter的性能不同

过滤查询(filter)是对集合包含/排除的简单检查,这使得它们计算速度非常快。 当至少有一个过滤查询是“稀疏”(仅有少量匹配的文档)时,可以利用各种优化,并且可以将缓存经常使用的filter过滤查询缓存在内存中以加快访问速度。

对比之下,query检索(评分查询)不仅要查找匹配的文档,还要计算每个文档的相关程度,这通常会使其比非评分文档更复杂。 另外,查询结果不可缓存

由于倒排索引,只有几个文档匹配的简单评分查询(query检索)可能会比跨越数百万个文档的过滤器(filter过滤)表现得更好。 但是,一般来说,fiter过滤的性能将胜过评分查询(query检索)。

过滤(filter)的目标是减少必须由评分查询(query)检查的文档数量。

5、filter过滤怎么缓存呢?

Elasticsearch将创建一个文档匹配过滤器的位集bitset(如果文档匹配则为1,否则为0)。 随后用相同的过滤器执行查询将重用此信息。

每当添加或更新新文档时,位集bitset也会更新。

6、使用场景

  • 全文检索以及任何使用相关性评分的场景使用query检索。

  • 除此之外的其他使用filter过滤器过滤。

7、query和filter实战

ebay在Elasticsearch使用经验中总结到:

Use filter context instead of query context if possible.

即:如果可能,请使用filter过滤器上下文而不是query查询上下文

查询query和过滤器filter已合并(在ES1.X版本是分开的,存在filtered检索类型)。

ES高版本(2.X/5.X/6.x以后),任何查询子句都可以在“查询上下文query”中用作查询,并在“过滤器上下文filter”中用作过滤器。

举例:

GET /_search
{
  "query": { 
    "bool": { 
      "must": [
        { "match": { "title":   "Search"        }}, 
        { "match": { "content": "Elasticsearch" }}  
      ],
      "filter": [ 
        { "term":  { "status": "published" }}, 
        { "range": { "publish_date": { "gte": "2015-01-01" }}} 
      ]
    }
  }
}

相关标签: elasticsearch