tensorflow学习笔记——卷积神经网络的简单应用
程序员文章站
2022-07-06 16:22:38
...
本文用卷积神经网络实现MNIST数据集分类。可在这个网站下载MNIST数据集。下载后的数据如下图所示:
代码如下:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#载入数据
mnist = input_data.read_data_sets("E:/mnist",one_hot=True)
#每个批次大小
batch_size = 200
#计算一共有多少个批次
n_batch = mnist.train.num_examples//batch_size #整除
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev = 0.1)#用截断正态分布初始化
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#步长4个值分别表示图片步长(一个批次多张图片),向右移动步长,向下移动步长,层数移动步长,SAME表示边缘补0
def max_pool(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
#第一维:每个批次图片数,第二三维:图像宽高,第四维:图像层数
x_image = tf.reshape(x,[-1,28,28,1])
#第一层卷积
W_conv1 = weight_variable([5,5,1,32])#5×5的卷积核,图像层数为1,卷积核32个
b_conv1 = bias_variable([32])
conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
pool1 = max_pool(conv1)
#第二层卷积
W_conv2 = weight_variable([5,5,32,64])#5×5的卷积核,图像层数为32,卷积核64个
b_conv2 = bias_variable([64])
conv2 = tf.nn.relu(conv2d(pool1,W_conv2)+b_conv2)
pool2 = max_pool(conv2)
pool2_flat = tf.reshape(pool2,[-1,7*7*64])#将64张7×7的图片拉平
# 第一层全连接
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
fc1 = tf.nn.relu(tf.matmul(pool2_flat,W_fc1)+b_fc1)
keep_prob = tf.placeholder(tf.float32)
fc1_drop = tf.nn.dropout(fc1,keep_prob)
#第二层全连接
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(fc1_drop,W_fc2)+b_fc2)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction))
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#equl判断是否相等,argmax返回张量最大值的索引
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #将布尔型转换为浮点型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(21):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print("Iter " + str(epoch) + " Accuracy" + str(acc))
运行结果如下:
上一篇: Java微信公众平台开发之公众号支付(微信内H5调起支付)
下一篇: 卷积神经网络的经典网络介绍
推荐阅读
-
[tensorflow应用之路]什么是深度神经网络——通过实现简单的神经网络理解DNN
-
tensorflow实现简单的卷积神经网络
-
tensorflow学习笔记之简单的神经网络训练和测试
-
TensorFlow深度学习进阶教程:TensorFlow实现CIFAR-10数据集测试的卷积神经网络
-
tensorflow学习笔记——卷积神经网络的简单应用
-
tensorflow学习笔记【卷积神经网络】
-
tensorflow学习笔记之mnist的卷积神经网络实例
-
tensorflow学习笔记之简单的神经网络训练和测试
-
学习笔记(06):TensorFlow 实战教程:如何用卷积神经网络打造图片识别应用-TensorFlow 实战教程:如何用卷积神经网络快速打造图片识别应用(下)...
-
tensorflow实现简单的卷积神经网络