欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

MySQL 上亿大表优化实践

程序员文章站 2022-12-05 14:10:36
[toc] 背景 XX实例(一主一从)xxx告警中每天凌晨在报SLA报警,该报警的意思是存在一定的主从延迟(若在此时发生主从切换,需要长时间才可以完成切换,要追延迟来保证主从数据的一致性) XX实例的慢查询数量最多(执行时间超过1s的sql会被记录),XX应用那方每天晚上在做删除一个月前数据的任务 ......

目录


背景

xx实例(一主一从)xxx告警中每天凌晨在报sla报警,该报警的意思是存在一定的主从延迟(若在此时发生主从切换,需要长时间才可以完成切换,要追延迟来保证主从数据的一致性)

xx实例的慢查询数量最多(执行时间超过1s的sql会被记录),xx应用那方每天晚上在做删除一个月前数据的任务

分析

使用pt-query-digest工具分析最近一周的mysql-slow.log
pt-query-digest --since=148h mysql-slow.log | less
结果第一部分
MySQL 上亿大表优化实践

最近一个星期内,总共记录的慢查询执行花费时间为25403s,最大的慢sql执行时间为266s,平均每个慢sql执行时间5s,平均扫描的行数为1766万

结果第二部分
MySQL 上亿大表优化实践

select arrival_record操作记录的慢查询数量最多有4万多次,平均响应时间为4s,delete arrival_record记录了6次,平均响应时间258s

select xxx_record语句

select arrival_record 慢查询语句都类似于如下所示,where语句中的参数字段是一样的,传入的参数值不一样
select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0\g

MySQL 上亿大表优化实践
select arrival_record 语句在mysql中最多扫描的行数为5600万、平均扫描的行数为172万,推断由于扫描的行数多导致的执行时间长

查看执行计划

explain select count() from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0\g;
************************** 1. row ***************************
id: 1
select_type: simple
table: arrival_record
partitions: null
type: ref
possible_keys: ixfk_arrival_record
key: ixfk_arrival_record
key_len: 8
ref: const
rows: 32261320
filtered: 3.70
extra: using index condition; using where
1 row in set, 1 warning (0.00 sec)

用到了索引ixfk_arrival_record,但预计扫描的行数很多有3000多w行

show index from arrival_record;
+----------------+------------+---------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| table | non_unique | key_name | seq_in_index | column_name | collation | cardinality | sub_part | packed | null | index_type | comment | index_comment |
+----------------+------------+---------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| arrival_record | 0 | primary | 1 | id | a | 107990720 | null | null | | btree | | |
| arrival_record | 1 | ixfk_arrival_record | 1 | product_id | a | 1344 | null | null | | btree | | |
| arrival_record | 1 | ixfk_arrival_record | 2 | station_no | a | 22161 | null | null | yes | btree | | |
| arrival_record | 1 | ixfk_arrival_record | 3 | sequence | a | 77233384 | null | null | | btree | | |
| arrival_record | 1 | ixfk_arrival_record | 4 | receive_time | a | 65854652 | null | null | yes | btree | | |
| arrival_record | 1 | ixfk_arrival_record | 5 | arrival_time | a | 73861904 | null | null | yes | btree | | |
+----------------+------------+---------------------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+---------------+

show create table arrival_record;
..........
arrival_spend_ms bigint(20) default null,
total_spend_ms bigint(20) default null,
primary key (id),
key ixfk_arrival_record (product_id,station_no,sequence,receive_time,arrival_time) using btree,
constraint fk_arrival_record_product foreign key (product_id) references product (id) on delete no action on update no action
) engine=innodb auto_increment=614538979 default charset=utf8 collate=utf8_bin |
---

  • 该表总记录数约1亿多条,表上只有一个复合索引,product_id字段基数很小,选择性不好
  • 传入的过滤条件 where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0 没有station_nu字段,使用不到复合索引 ixfk_arrival_record的 product_id,station_no,sequence,receive_time 这几个字段
  • 根据最左前缀原则,select arrival_record只用到了复合索引ixfk_arrival_record的第一个字段product_id,而该字段选择性很差,导致扫描的行数很多,执行时间长
  • receive_time字段的基数大,选择性好,可对该字段单独建立索引,select arrival_record sql就会使用到该索引

现在已经知道了在慢查询中记录的select arrival_record where语句传入的参数字段有 product_id,receive_time,receive_spend_ms,还想知道对该表的访问有没有通过其它字段来过滤了?


神器tcpdump出场的时候到了

使用tcpdump抓包一段时间对该表的select语句

tcpdump -i bond0 -s 0 -l -w - dst port 3316 | strings | grep select | egrep -i 'arrival_record' >/tmp/select_arri.log

获取select 语句中from 后面的where条件语句

ifs_old=$ifs
ifs=$'\n'
for i in `cat /tmp/select_arri.log `;do echo ${i#*'from'}; done | less
ifs=$ifs_old

arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=17 and arrivalrec0_.station_no='56742'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='s7100'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='v4631'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='s9466'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='v4205'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='v4105'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='v4506'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='v4617'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='s8356'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='s8356'

  • select 该表 where条件中有product_id,station_no,sequence字段,可以使用到复合索引ixfk_arrival_record的前三个字段
    ---

综上所示,优化方法为,删除复合索引ixfk_arrival_record,建立复合索引idx_sequence_station_no_product_id,并建立单独索引indx_receive_time

delete xxx_record语句

MySQL 上亿大表优化实践

该delete操作平均扫描行数为1.1亿行,平均执行时间是262s

delete语句如下所示,每次记录的慢查询传入的参数值不一样

delete from arrival_record where receive_time < str_to_date('2019-02-23', '%y-%m-%d')\g

执行计划

explain select * from arrival_record where receive_time < str_to_date('2019-02-23', '%y-%m-%d')\g
*************************** 1. row ***************************
id: 1
select_type: simple
table: arrival_record
partitions: null
type: all
possible_keys: null
key: null
key_len: null
ref: null
rows: 109501508
filtered: 33.33
extra: using where
1 row in set, 1 warning (0.00 sec)

  • 该delete语句没有使用索引(没有合适的索引可用),走的全表扫描,导致执行时间长
  • 优化方法也是 建立单独索引indx_receive_time(receive_time)

测试

拷贝arrival_record表到测试实例上进行删除重新索引操作
xx实例arrival_record表信息

du -sh /datas/mysql/data/3316/cq_new_cimiss/arrival_record*
12k /datas/mysql/data/3316/cq_new_cimiss/arrival_record.frm
48g /datas/mysql/data/3316/cq_new_cimiss/arrival_record.ibd

select count() from cq_new_cimiss.arrival_record;
+-----------+
| count(
) |
+-----------+
| 112294946 |
+-----------+
1亿多记录数

select
table_name,
concat(format(sum(data_length) / 1024 / 1024,2),'m') as dbdata_size,
concat(format(sum(index_length) / 1024 / 1024,2),'m') as dbindex_size,
concat(format(sum(data_length + index_length) / 1024 / 1024 / 1024,2),'g') as table_size(g),
avg_row_length,table_rows,update_time
from
information_schema.tables
where table_schema = 'cq_new_cimiss' and table_name='arrival_record';

+----------------+-------------+--------------+------------+----------------+------------+---------------------+
| table_name | dbdata_size | dbindex_size | table_size(g) | avg_row_length | table_rows | update_time |
+----------------+-------------+--------------+------------+----------------+------------+---------------------+
| arrival_record | 18,268.02m | 13,868.05m | 31.38g | 175 | 109155053 | 2019-03-26 12:40:17 |
+----------------+-------------+--------------+------------+----------------+------------+---------------------+

磁盘占用空间48g,mysql中该表大小为31g,存在17g左右的碎片,大多由于删除操作造成的(记录被删除了,空间没有回收)


备份还原该表到新的实例中,删除原来的复合索引,重新添加索引进行测试

mydumper并行压缩备份

 user=root
  passwd=xxxx
 socket=/datas/mysql/data/3316/mysqld.sock
 db=cq_new_cimiss
 table_name=arrival_record
 backupdir=/datas/dump_$table_name
 mkdir -p $backupdir
 
   nohup echo `date +%t` && mydumper -u $user -p $passwd -s $socket  -b $db -c  -t $table_name  -o $backupdir  -t 32 -r 2000000 && echo `date +%t` &

并行压缩备份所花时间(52s)和占用空间(1.2g,实际该表占用磁盘空间为48g,mydumper并行压缩备份压缩比相当高!)

started dump at: 2019-03-26 12:46:04
........

finished dump at: 2019-03-26 12:46:56

du -sh   /datas/dump_arrival_record/
1.2g    /datas/dump_arrival_record/

拷贝dump数据到测试节点
scp -rp /datas/dump_arrival_record root@10.230.124.19:/datas

多线程导入数据

time myloader -u root -s /datas/mysql/data/3308/mysqld.sock -p 3308 -p root -b test -d /datas/dump_arrival_record -t 32

real 126m42.885s
user 1m4.543s
sys 0m4.267s

逻辑导入该表后磁盘占用空间

du -h -d 1 /datas/mysql/data/3308/test/arrival_record.
12k /datas/mysql/data/3308/test/arrival_record.frm
30g /datas/mysql/data/3308/test/arrival_record.ibd
没有碎片,和mysql的该表的大小一致*

cp -rp /datas/mysql/data/3308 /datas


分别使用online ddl和 pt-osc工具来做删除重建索引操作
先删除外键,不删除外键,无法删除复合索引,外键列属于复合索引中第一列

nohup bash /tmp/ddl_index.sh &
2019-04-04-10:41:39 begin stop mysqld_3308
2019-04-04-10:41:41 begin rm -rf datadir and cp -rp datadir_bak
2019-04-04-10:46:53 start mysqld_3308
2019-04-04-10:46:59 online ddl begin
2019-04-04-11:20:34 onlie ddl stop
2019-04-04-11:20:34 begin stop mysqld_3308
2019-04-04-11:20:36 begin rm -rf datadir and cp -rp datadir_bak
2019-04-04-11:22:48 start mysqld_3308
2019-04-04-11:22:53 pt-osc begin
2019-04-04-12:19:15 pt-osc stop
online ddl 花费时间为34 分钟,pt-osc花费时间为57 分钟,使用onlne ddl时间约为pt-osc工具时间的一半

做ddl 参考
MySQL 上亿大表优化实践

实施

由于是一主一从实例,应用是连接的vip,删除重建索引采用online ddl来做。停止主从复制后,先在从实例上做(不记录binlog),主从切换,再在新切换的从实例上做(不记录binlog)

function red_echo () {

        local what="$*"
        echo -e "$(date +%f-%t)  ${what}"
}

function check_las_comm(){
    if [ "$1" != "0" ];then
        red_echo "$2"
        echo "exit 1"
        exit 1
    fi
}

red_echo "stop slave"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"stop slave"
check_las_comm "$?" "stop slave failed"

red_echo "online ddl begin"
 mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"set sql_log_bin=0;select now() as  ddl_start;alter table $db_.\`${table_name}\` drop foreign key fk_arrival_record_product,drop index ixfk_arrival_record,add index idx_product_id_sequence_station_no(product_id,sequence,station_no),add index idx_receive_time(receive_time);select now() as ddl_stop" >>${log_file} 2>& 1
 red_echo "onlie ddl stop"
 red_echo "add foreign key"
 mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"set sql_log_bin=0;alter table $db_.${table_name} add constraint _fk_${table_name}_product foreign key (product_id) references cq_new_cimiss.product (id) on delete no action on update no action;" >>${log_file} 2>& 1
 check_las_comm "$?" "add foreign key error"
 red_echo "add foreign key stop"

red_echo "start slave"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"start slave"
check_las_comm "$?" "start slave failed"

执行时间

2019-04-08-11:17:36 stop slave
mysql: [warning] using a password on the command line interface can be insecure.
ddl_start
2019-04-08 11:17:36
ddl_stop
2019-04-08 11:45:13
2019-04-08-11:45:13 onlie ddl stop
2019-04-08-11:45:13 add foreign key
mysql: [warning] using a password on the command line interface can be insecure.
2019-04-08-12:33:48 add foreign key stop
2019-04-08-12:33:48 start slave
删除重建索引花费时间为28分钟,添加外键约束时间为48分钟

再次查看delete 和select语句的执行计划

explain select count() from arrival_record where receive_time < str_to_date('2019-03-10', '%y-%m-%d')\g
************************** 1. row ***************************
id: 1
select_type: simple
table: arrival_record
partitions: null
type: range
possible_keys: idx_receive_time
key: idx_receive_time
key_len: 6
ref: null
rows: 7540948
filtered: 100.00
extra: using where; using index

explain select count() from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0\g;
************************** 1. row ***************************
id: 1
select_type: simple
table: arrival_record
partitions: null
type: range
possible_keys: idx_product_id_sequence_station_no,idx_receive_time
key: idx_receive_time
key_len: 6
ref: null
rows: 291448
filtered: 16.66
extra: using index condition; using where
都使用到了idx_receive_time 索引,扫描的行数大大降低

索引优化后

delete 还是花费了77s时间

delete from arrival_record where receive_time < str_to_date('2019-03-10', '%y-%m-%d')\g

MySQL 上亿大表优化实践

delete 语句通过receive_time的索引删除300多万的记录花费77s时间*

delete大表优化为小批量删除

应用端已优化成每次删除10分钟的数据(每次执行时间1s左右),xxx中没在出现sla(主从延迟告警)
MySQL 上亿大表优化实践

另一个方法是通过主键的顺序每次删除20000条记录

#得到满足时间条件的最大主键id
#通过按照主键的顺序去 顺序扫描小批量删除数据
#先执行一次以下语句
 select max(id) into @need_delete_max_id from `arrival_record` where receive_time<'2019-03-01' ;
 delete from arrival_record where id<@need_delete_max_id limit 20000;
 select row_count();  #返回20000


#执行小批量delete后会返回row_count(), 删除的行数
#程序判断返回的row_count()是否为0,不为0执行以下循环,为0退出循环,删除操作完成
 delete from arrival_record where id<@need_delete_max_id limit 20000;
 select row_count();
#程序睡眠0.5s

总结

  • 表数据量太大时,除了关注访问该表的响应时间外,还要关注对该表的维护成本(如做ddl表更时间太长,delete历史数据)
  • 对大表进行ddl操作时,要考虑表的实际情况(如对该表的并发表,是否有外键)来选择合适的ddl变更方式
  • 对大数据量表进行delete,用小批量删除的方式,减少对主实例的压力和主从延迟