欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ4827: [Hnoi2017]礼物(FFT 二次函数)

程序员文章站 2022-11-10 16:58:41
题意 "题目链接" Sol 越来越菜了。。裸的FFT写了1h。。 思路比较简单,直接把 $\sum (x_i y_i + c)^2$ 拆开 发现能提出一坨东西,然后与c有关的部分是关于C的二次函数可以直接算最优取值 剩下的要求的就是$max (\sum x_i y_i)$ 画画图就知道把y序列倒过来 ......

题意

题目链接

sol

越来越菜了。。裸的fft写了1h。。

思路比较简单,直接把

\(\sum (x_i - y_i + c)^2\)

拆开

发现能提出一坨东西,然后与c有关的部分是关于c的二次函数可以直接算最优取值

剩下的要求的就是\(max (\sum x_i y_i)\)

画画图就知道把y序列倒过来就是个裸的fft了。

#include<bits/stdc++.h> 
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
#define ll long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int maxn = 1e6 + 10, mod = 1e9 + 7, inf = 1e9 + 10;
const double eps = 1e-9, pi = acos(-1);
template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename a> inline void debug(a a){cout << a << '\n';}
template <typename a> inline ll sqr(a x){return 1ll * x * x;}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n, m;
int a[maxn], b[maxn], c[maxn], t[maxn], nx, ny, rev[maxn];
double sx, sy;
struct com {
    double x, y;
}a[maxn], b[maxn], c[maxn];
com operator * (const com a, const com b) {
    return (com) {a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x};
}
com operator + (const com a, const com b) {
    return (com) {a.x + b.x, a.y + b.y};
}
com operator - (const com a, const com b) {
    return (com) {a.x - b.x, a.y - b.y};
}
void fft(com *a, int lim, int opt) {
    for(int i = 0; i < lim; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
    for(int mid = 1; mid < lim; mid <<= 1) {
        com wn = (com) {cos(pi / mid), opt * sin(pi / mid)};
        for(int i = 0, r = mid << 1; i <= lim; i += r) {//tag
            com w = (com) {1, 0};
            for(int j = 0; j < mid; j++, w = w *  wn) {
                com x = a[i + j], y = w * a[i + j + mid];
                a[i + j] = x + y;
                a[i + j + mid] = x - y;
            }
        }
    }
    if(opt == -1) {
        for(int i = 0; i <= lim; i++) a[i].x /= lim;
    }
}
ll check(int c) {
    ny = 0;
    memcpy(b, t, sizeof(t));
    for(int i = 0; i < n; i++) b[i] += c, b[i + n] = b[i], ny += b[i] * b[i];
    int m = 2 * n - 1;
    reverse(b, b + m + 1);
    memset(a, 0, sizeof(a));
    memset(b, 0, sizeof(b));
    memset(c, 0, sizeof(c));
    n--;
    for(int i = 0; i <= n; i++) a[i].x = a[i];
    for(int i = 0; i <= m; i++) b[i].x = b[i];
    int lim = 1, len = 0;
    while(lim <= n + m) lim <<= 1, len++;
    for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (len - 1));
    fft(a, lim, 1); fft(b, lim, 1);
    for(int i = 0; i <= lim; i++) c[i] = a[i] * b[i];
    fft(c, lim, -1);
    
    n++;
    ll ret = 0;
    for(int i = 0; i <= m; i++) chmax(ret, c[i].x + 0.5); 
    return -2 * ret + nx + ny;
}   
signed main() {
    n = read(); m = read();
    for(int i = 0; i < n; i++) a[i] = read(), sx += a[i], nx += a[i] * a[i];
    for(int i = 0; i < n; i++) b[i] = read(), sy += a[i];
    memcpy(t, b, sizeof(b));
    int c = - (sx - sy) / n;
    ll ans = check(c);
    ans = min(ans, min(check(c - 1), check(c + 1)));
    cout << ans;
    return 0;
}