51nod1238 最小公倍数之和 V3(莫比乌斯反演)
程序员文章站
2022-10-06 11:03:29
题意 "题目链接" Sol 不想打公式了,最后就是求一个 $\sum_{i=1}^n ig(\frac{N}{i})$ $g(i) = \sum_{i=1}^n \phi(i) i^2$ 拉个$id2$卷一下 "这个博客推的狠详细" cpp include define int long long ......
题意
sol
不想打公式了,最后就是求一个
\(\sum_{i=1}^n ig(\frac{n}{i})\)
\(g(i) = \sum_{i=1}^n \phi(i) i^2\)
拉个\(id2\)卷一下
#include<bits/stdc++.h> #define int long long #define ll long long using namespace std; const int maxn = 1e6 + 10, mod = 1e9 + 7, inf = 1e9 + 10, inv2 = 500000004, inv6 = 166666668, b = 1e6; template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;} template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);} template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;} template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;} void print(int x) { if(!x) return ; print(x / 10); putchar(x % 10 + '0'); } inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = 1ll * x * 10 + c - '0', c = getchar(); return x * f; } int g[maxn], phi[maxn], mu[maxn], vis[maxn], prime[maxn], tot; map<int, int> mp; int sum(int n) {return mul(mul(n % mod, add(n, 1)), inv2);} int sum2(int n) {return mul(mul(n % mod, mul(add(n, 1), mul(2, n) + 1)), inv6);} int sum3(int n) {return mul(sum(n), sum(n));} void sieve(int n) { vis[1] = phi[1] = mu[1] = 1; for(int i = 2; i <= n; i++) { if(!vis[i]) prime[++tot] = i, mu[i] = -1, phi[i] = i - 1; for(int j = 1; j <= tot && i * prime[j] <= n; j++) { vis[i * prime[j]] = 1; if(i % prime[j]) phi[i * prime[j]] = phi[i] * phi[prime[j]], mu[i * prime[j]] = -mu[i]; else {mu[i * prime[j]] = 0; phi[i * prime[j]] = phi[i] * prime[j]; break;}; } } for(int i = 1; i <= n; i++) g[i] = add(g[i - 1], mul(phi[i], mul(i, i))); } ll dsieve(int n) { if(n <= b) return g[n]; else if(mp[n]) return mp[n]; ll t = sum3(n); for(int i = 2, nxt; i <= n; i = nxt + 1) { nxt = n / (n / i); add2(t, -mul(add(sum2(nxt), -sum2(i - 1)), dsieve(n / i))); } return mp[n] = t; } signed main() { sieve(b); int n = read(), ans = 0; for(int i = 1, nxt; i <= n; i = nxt + 1) { nxt = n / (n / i); add2(ans, mul(add(sum(nxt), -sum(i - 1)), dsieve(n / i))); } print(ans); return 0; }
上一篇: cf1139D. Steps to One(dp)
下一篇: 类的另类用法--数据的封装