大数据时代如何治理骚扰电话?
您一天会接多少个骚扰电话?普通人一般一天能接到一到两个骚扰电话,比如半夜响一声就挂了的吸费电话。大早上被叫醒的卖保险、卖基金、卖房的各种推销电话。还有淘宝买东西,给了差评,卖家利用报复心理打电话,1个小时可以拨打几十个骚扰电话,有人一天之内接过1千多个骚扰电话,各种骚扰电话不分时间地点场合,就像灾年虫害一样,从普通人到国家*无一幸免。
来看一组数据,据某权威机构《2014年骚扰电话年度报告》显示,2014年全国骚扰电话总数达270亿通。就骚扰电话类型来看,“响一声”电话以50%的比例位居骚扰电话数量的首位,其次为广告推销、诈骗电话、房产中介和保险理财。这些骚扰电话的源头,是愈演愈烈的个人信息泄露。
被电话骚扰大数据罪责难逃
大数据是个炒得很热的概念,物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。大数据这座“金矿”在改善人们的生活上立下了汗马功劳,但大数据需要采集大量的个人信息,其中就会涉及许多个人隐私。
除了办理信用卡,网上租赁房屋,网上购物,游戏注册认证之外,随着大数据的广泛应用,像手机打车软件、订餐软件、微信、各种热门app等,让我们享受便利的同时,不可避免得需要读取我们的地理位置和通讯录信息等。数据的价值在于将正确的信息在正确的时间交付到正确的人手中,否则,那就是棱镜的另一面。
关于个人信息及敏感隐私数据泄露事件是层出不穷,“棱镜计划”、“支付宝安全门事件”、“12306用户数据泄露”等一系列事件为人们敲响了大数据时代个人信息安全的警钟。引发的不仅是铺天盖地的广告推销,还给不法分子可乘之机,利用个人信息进行各种私人调查、实施非法商业竞争、实施刑事犯罪、进行身份盗窃等。拿最典型的骚扰电话来说,许多骚扰行为是无孔不入,甚至出现了伪基站,他们模仿中国移动的信号,达到盈利的目的。
大数据如何泄露个人隐私?
毋庸置疑,大数据分析是商业智能的演进,相比于传统的数据,具有数据量大、查询分析复杂、高效等特点。比如,沃尔玛每隔一小时处理超过100万客户的交易,录入量数据库估计超过2.5PB相当于美国国会图书馆的书籍的167倍。FACEBOOK从它的用户群获得并处理400亿张照片。解码最原始的人类基因组花费10年时间处理,如今可以在一个星期内实现。
因为个人信息数据的多种多样,大数据还会覆盖如智能终端、智能手环、物联网、位置导航等个人端产生的海量信息,这些开放、分散的、海量的数据实时接入网络,管理员很难像传统互联网管理一样逐一对其编辑和管理,进行实时跟踪保护。
同样,大数据收集缺乏针对性,容易导致广泛、不合理、过度收集个人信息数据,常常通过覆盖面很广的个人信息收集和分析后才能找出其中有价值的信息,在此过程中很难避免不触碰到一些个人隐私数据。没有价值的信息又会丢弃,这些被丢弃的信息里又难免有个人隐私数据等。
怎样治理电话骚扰?
当然,建立健全相关法律法规是第一位的。目前,世界上已有50多个国家和地区制定了保护个人信息的相关法律,我国在大数据个人信息安全方面缺乏权威化的法律规制,缺少统一监管和行业自律,我国应制定统一的个人信息保护法,对公民个人信息的采集、使用和保密等问题作出详细规定。实际上,这个工作很早就已经开始,但个人信息保护法至今还没有出台,原因在于查处难、取证难、维权难。
随着大数据的日益蓬勃发展,在可以预见的将来,个人隐私保护将仍是要解决的重要课题。如果能够将保护个人隐私信息作为大数据技术突飞猛进的另一个考量,那么相关筛选和屏蔽个人隐私信息的技术也不是难事。归根结底,没有整治的军队必然是一团散沙,只有下定决心改变,才能看到曙光。同时需要提升用户的安全保护意识,群策群力,在大数据上做到双赢。