YOLOv3 object detection demo
macOS安装利用Homebrew安装wget
今天想尝试一下YOLO: Real-Time Object Detection的demo,这是官网https://pjreddie.com/darknet/yolo/
跟着教程操作,走到用wget这一步时,因为我是macOS,提示找不到wget命令。
然后就想利用Homebrew安装wget,官网是https://brew.sh/index_zh-cn.html,在执行/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"这个命令时候报错:
curl: (7) Failed to connect to raw.githubusercontent.com port 443: Operation timed out
然后参考了这个教程https://juejin.im/post/5eb42c096fb9a0434b735579,下载了brew_install.rb。
然后在命令行输入:ruby brew_install.rb
之后再安装wget,直接brew install wget
done!
try YOLOv3 object detection demo
然后回到YOLO的教程,wget命令下载pre-trained weight file,但用wget下载速度非常慢,直接网页下载反而快很多(感觉上面白折腾了。。)
下载好之后,把yolov3.weight剪切到darknet文件夹里,然后执行命令./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
执行命令open darknet/predictions.jpg就是识别结果了!
本文地址:https://blog.csdn.net/qq_21288703/article/details/107300057
下一篇: 小心!女人常用这物颜色越深越致癌
推荐阅读
-
windows10下安装TensorFlow Object Detection API的步骤
-
YOLOv3 object detection demo
-
Object Detection finetuning tutorial + Pytorch代码实战练兵
-
ModuleNotFoundError: No module named 'object_detection'
-
Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Dr
-
【object_detection】Top-N指标计算方法
-
【Demo 1】基于object_detection API的行人检测 1:环境与依赖
-
windows下安装tensorflow以及object detection api
-
利用TensorFlow Object Detection API的预训练模型训练自己的数据
-
Object detection with deep learning and OpenCV