Codeforces Round #665 (Div. 2) D. Maximum Distributed Tree(dfs)
程序员文章站
2022-08-15 19:44:23
题目链接思路:dfs讨论m和n−1之间的大小关系,再计算每条边的贡献次数排序。代码:#include#define int long long#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);const int N=2e5+7;const int M=2e4+5;const double eps=1e-8;const int mod=998244353;const in...
题目链接
思路:
dfs讨论m和n−1之间的大小关系,再计算每条边的贡献次数排序。
代码:
#include<bits/stdc++.h>
#define int long long
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
const int N=2e5+7;
const int M=2e4+5;
const double eps=1e-8;
const int mod=1e9+7;
const int inf=0x7fffffff;
const double pi=3.1415926;
using namespace std;
vector<int>v[N],num;
int n;
int dfs(int x,int fa)
{
int sum=1;
for(int i=0;i<v[x].size();i++)
{
if(v[x][i]==fa)
continue;
sum+=dfs(v[x][i],x);
}
if(x!=1)
num.push_back((n-sum)*sum);
return sum;
}
signed main()
{
IOS;
int t;
cin>>t;
while(t--)
{
cin>>n;
for(int i=0;i<=n;i++)
v[i].clear();
num.clear();
for(int i=1;i<n;i++)
{
int x,y;
cin>>x>>y;
v[x].push_back(y);
v[y].push_back(x);
}
int m;
cin>>m;
vector<int>p;
for(int i=0;i<m;i++)
{
int c;
cin>>c;
p.push_back(c);
}
dfs(1,-1);
if(m<n-1)
{
for(int i=0;i<n-1-m;i++)
p.push_back(1);
}
sort(num.begin(),num.end());
sort(p.begin(),p.end());
int ans=0;
if(m<=n-1)
{
for(int i=0;i<n-1;i++)
{
ans+=(num[i]*p[i])%mod;
ans%=mod;
}
}
else
{
for(int i=0;i<n-2;i++)
{
ans+=(num[i]*p[i])%mod;
ans%=mod;
}
long long add=1;
for(int i=n-2;i<m;i++)
{
add=(add*p[i])%mod;
}
ans+=(add*num[n-2])%mod;
ans%=mod;
}
cout<<ans<<endl;
}
return 0;
}
本文地址:https://blog.csdn.net/ACkingdom/article/details/108178252
上一篇: Nodejs博客开发笔记
推荐阅读
-
Educational Codeforces Round 97 (Rated for Div. 2) D. Minimal Height Tree
-
Codeforces Round #665 (Div. 2) D. Maximum Distributed Tree(dfs)
-
Codeforces Round #583 (Div. 1 + Div. 2,) D. Treasure Island(dfs+思维)
-
Educational Codeforces Round 55 (Rated for Div. 2) D. Maximum Diameter Graph (构造图)
-
Codeforces Round #592 (Div. 2) D. Paint the Tree(构造)
-
Educational Codeforces Round 97 (Rated for Div. 2) D. Minimal Height Tree
-
Codeforces Round #665 (Div. 2) D. Maximum Distributed Tree(dfs)