欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

python 收益与风险图表集成

程序员文章站 2022-07-13 15:39:05
...

呈现
1.盈亏状态的买卖区间及标注上买卖信号点
2.资金曲线及资金最大回撤点
3.基准收益曲线及使用策略后的收益曲线

例程代码

import pandas_datareader.data as web
import pandas as pd
import numpy as np
import datetime
import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec  # 分割子图

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

#股票数据获取及处理接口
def GetStockDatApi(stockName=None,stockTimeS=None,stockTimeE=None, N1=15,N2=5):

    stockdata = web.DataReader(stockName, "yahoo", stockTimeS, stockTimeE)

    stockdata['N1_High'] = stockdata.High.rolling(window=N1).max()#计算最近N1个交易日最高价
    # expanding 从最开始到当前的最大值
    expan_max = stockdata.Close.expanding().max()
    stockdata['N1_High'].fillna(value=expan_max,inplace=True)#目前出现过的最大值填充前N1个nan

    stockdata['N2_Low'] = stockdata.Low.rolling(window=N2).min()#计算最近N2个交易日最低价
    expan_min = stockdata.Close.expanding().min()
    stockdata['N2_Low'].fillna(value=expan_min,inplace=True)#目前出现过的最小值填充前N2个nan

    #收盘价超过N1最高价 买入股票持有
    buy_index = stockdata[stockdata.Close > stockdata.N1_High.shift(1)].index
    stockdata.loc[buy_index,'signal'] = 1
    #收盘价超过N2最低价 卖出股票持有
    sell_index = stockdata[stockdata.Close < stockdata.N2_Low.shift(1)].index
    stockdata.loc[sell_index,'signal'] = 0
    stockdata['signal'].fillna(method = 'ffill',inplace = True)
    stockdata['signal'] = stockdata.signal.shift(1)
    stockdata['signal'].fillna(method = 'bfill',inplace = True)

    return stockdata

#初始化变量
skip_days = 0
cash_hold = 100000 #初始资金
posit_num = 0 #持股数目
market_total = 0 #持股市值

#创建图表
fig = plt.figure(figsize=(10, 8), dpi=100, facecolor="white")#创建fig对象
gs = gridspec.GridSpec(3, 1, left=0.05, bottom=0.1, right=0.96, top=0.96, wspace=None, hspace=0.05, height_ratios=[4,2,2])
graph_trade = fig.add_subplot(gs[0,:])
graph_total = fig.add_subplot(gs[1,:])
graph_profit = fig.add_subplot(gs[2,:])

#获取股票交易数据
df_stockload = GetStockDatApi("600410.SS",datetime.datetime(2018, 10, 1), datetime.datetime(2019, 4, 1))

for kl_index, today in df_stockload.iterrows():
    # 买入/卖出执行代码
    if today.signal == 1 and skip_days == 0:  # 买入
        start = df_stockload.index.get_loc(kl_index)
        skip_days = -1
        posit_num = int(cash_hold / today.Close) #资金转化为股票
        cash_hold = 0
        graph_trade.annotate('买入',xy=(kl_index,df_stockload.Close.asof(kl_index)),xytext=(kl_index, df_stockload.Close.asof(kl_index)+2),arrowprops=dict(facecolor='r',shrink=0.1),horizontalalignment='left',verticalalignment='top')

    elif today.signal == 0 and skip_days == -1:  # 卖出 避免未买先卖
        end = df_stockload.index.get_loc(kl_index)
        skip_days = 0
        cash_hold = int(posit_num * today.Close) #股票转化为资金
        market_total = 0

        if df_stockload.Close[end] < df_stockload.Close[start]:  # 赔钱显示绿色
            graph_trade.fill_between(df_stockload.index[start:end], 0, df_stockload.Close[start:end], color='green', alpha=0.38)
        else:  # 赚钱显示红色
            graph_trade.fill_between(df_stockload.index[start:end], 0, df_stockload.Close[start:end], color='red', alpha=0.38)
        graph_trade.annotate('卖出',xy=(kl_index,df_stockload.Close.asof(kl_index)),xytext=(kl_index+datetime.timedelta(days=5), df_stockload.Close.asof(kl_index)+2),arrowprops=dict(facecolor='g',shrink=0.1),horizontalalignment='left',verticalalignment='top')

    if skip_days == -1: #持股
        market_total = int(posit_num * today.Close)
        df_stockload.loc[kl_index,'total'] = market_total
    else: #空仓
        df_stockload.loc[kl_index,'total'] = cash_hold

#计算基准收益/趋势突破策略收益
df_stockload['benchmark_profit'] = np.log(df_stockload.Close/df_stockload.Close.shift(1))
df_stockload['trend_profit'] = df_stockload.signal*df_stockload.benchmark_profit
df_stockload[['benchmark_profit','trend_profit']].cumsum().plot(grid=True,ax=graph_profit)

#计算收盘价曲线当前的滚动最高值
df_stockload['max_close'] = df_stockload['Close'].expanding().max()
df_stockload[['max_close','Close']].plot(grid=True,ax=graph_trade)

#计算资金曲线当前的滚动最高值
df_stockload['max_total'] = df_stockload['total'].expanding().max()
df_stockload[['max_total','total']].plot(grid=True,ax=graph_total)

#计算资金曲线在滚动最高值之后所回撤的百分比
df_stockload['per_total'] = df_stockload['total'] / df_stockload['max_total']
min_point_total = df_stockload.sort_values(by=['per_total']).iloc[[0], df_stockload.columns.get_loc('per_total')]
max_point_total = df_stockload[df_stockload.index <= min_point_total.index[0]].sort_values \
    (by=['total'], ascending=False).iloc[[0], df_stockload.columns.get_loc('total')]

#标注滚动最大点及最大回撤点
graph_total.annotate('滚动最大点',
                     xy=(max_point_total.index[0], df_stockload.total.asof(max_point_total.index[0])),
                     xytext=(max_point_total.index[0], df_stockload.total.asof(max_point_total.index[0]) + 4),
                     arrowprops=dict(facecolor='yellow', shrink=0.1), horizontalalignment='left',
                     verticalalignment='top')
graph_total.annotate('最大回撤点',
                     xy=(min_point_total.index[0], df_stockload.total.asof(min_point_total.index[0])),
                     xytext=(min_point_total.index[0], df_stockload.total.asof(min_point_total.index[0]) + 4),
                     arrowprops=dict(facecolor='yellow', shrink=0.1), horizontalalignment='left',
                     verticalalignment='top')

#图表显示参数配置
for label in graph_trade.xaxis.get_ticklabels():
    label.set_visible(False)
for label in graph_total.xaxis.get_ticklabels():
    label.set_visible(False)
for label in graph_profit.xaxis.get_ticklabels():
    label.set_rotation(45)
    label.set_fontsize(10)  # 设置标签字体
graph_trade.set_xlabel("")
graph_trade.set_title(u'华胜天成 收益与风险度量')
graph_total.set_xlabel("")

plt.show()

输出结果

python 收益与风险图表集成