一文搞定Pytorch快速入门
程序员文章站
2022-07-13 09:00:42
...
1 简介
Pytorch 是 Facebook 开发的 DL 开源框架,目前学术界运用广泛,本文将通过 MNIST 手写数字识别案例分享 Pytorch 的常用操作。
2 CNN
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
torch.manual_seed(1)
# 超参数
EPOCH = 1
BATCH_SIZE = 50
LR = 0.001
DOWNLOAD_MNIST = True
# 训练集
train_data = torchvision.datasets.MNIST(
root='./mnist/', # 文件路径
train=True,
transform=torchvision.transforms.ToTensor(), # 转换数据格式:C x H x W, 训练时归一化
download=DOWNLOAD_MNIST,
)
# 测试集
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
# 批训练:(50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# 测试前2000个样本
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.
test_y = test_data.test_labels[:2000]
# 模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( # 输入:(1, 28, 28)
# 卷积层
nn.Conv2d(
in_channels=1, # 输入通道数
out_channels=16, # 卷积核数目
kernel_size=5, # 卷积核大小
stride=1,
padding=2,
),
# **层
nn.ReLU(),
# 池化层
nn.MaxPool2d(kernel_size=2),
) # 输出:(16, 14, 14)
self.conv2 = nn.Sequential( # 输入:(16, 14, 14)
nn.Conv2d(16, 32, 5, 1, 2),
nn.ReLU(),
nn.MaxPool2d(2),
) # 输出:(32, 7, 7)
self.out = nn.Linear(32 * 7 * 7, 10) # 全连接层,输出:10
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # 展平成 (batch_size, 32 * 7 * 7=1568)
output = self.out(x)
return output
cnn = CNN()
# 训练模型
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # Adam优化器
loss_func = nn.CrossEntropyLoss() # 交叉熵损失
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader):
output = cnn(b_x)
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
Epoch: 0 | train loss: 0.0306 | test accuracy: 0.97
Epoch: 0 | train loss: 0.0147 | test accuracy: 0.98
Epoch: 0 | train loss: 0.0427 | test accuracy: 0.98
Epoch: 0 | train loss: 0.0078 | test accuracy: 0.98
3 RNN
import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
torch.manual_seed(1)
EPOCH = 1
BATCH_SIZE = 64
TIME_STEP = 28 # 图片高度
INPUT_SIZE = 28 # 图片宽度
LR = 0.01
DOWNLOAD_MNIST = True
train_data = torchvision.datasets.MNIST(
root='./mnist/',
train=True,
transform=torchvision.transforms.ToTensor(),
download=DOWNLOAD_MNIST,
)
# 测试集
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
# 批训练:(50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# 测试前2000个样本
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.
test_y = test_data.test_labels[:2000]
# 模型
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.LSTM(
input_size=28,
hidden_size=64, # 隐藏单元
num_layers=1,
batch_first=True,
)
self.out = nn.Linear(64, 10) # 输出层
def forward(self, x):
# 输入:(batch, time_step, input_size)
# 输出:(batch, time_step, output_size)
# 隐藏分状态h_n :(n_layers, batch, hidden_size)
# 隐藏主状态h_c :(n_layers, batch, hidden_size)
r_out, (h_n, h_c) = self.rnn(x, None)
out = self.out(r_out[:, -1, :])
return out
rnn = RNN()
# 训练模型
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)
loss_func = nn.CrossEntropyLoss()
for epoch in range(EPOCH):
for step, (x, b_y) in enumerate(train_loader):
b_x = x.view(-1, 28, 28) # 数据转格式:(batch, time_step, input_size)
output = rnn(b_x)
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
Epoch: 0 | train loss: 0.0945 | test accuracy: 0.94
Epoch: 0 | train loss: 0.0984 | test accuracy: 0.94
Epoch: 0 | train loss: 0.0332 | test accuracy: 0.95
Epoch: 0 | train loss: 0.1868 | test accuracy: 0.96
上一篇: 一文搞定java枚举
下一篇: kafka单节点部署