欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ROS中发布GNSS和点云PCD信息

程序员文章站 2022-07-12 12:51:21
...

1.发布gnss

ros::Publisher pub = nh.advertise<nmea_msgs::Sentence>("/nmea_sentence", 1);
// Publish all topics with the same ROS time stamp.
ros::Time topic_publish_time = ros::Time::now();

// === NMEA Sentence ===
msg.header.stamp = topic_publish_time;
msg.header.frame_id = "/gps";
// 发布间隔
ros::WallDuration(0.1).sleep();
msg.sentence = `$GPGGA,063201.60,3016.3898531,N,12004.0198533,E,4,19,0.7,6.795,M,7.038,M,1.6,1792*78;
pub.publish(msg);

发布后的完整信息为
header:
seq: 156476
stamp:
secs: 1427157704
nsecs: 536139011
frame_id: “/gps”
sentence: “$GNRMC,004129.40,A,3514.0854393,N,13700.3090060,E,5.9921,147.814,240315,7.320,E,D*10”

2.发布pcd文件

void loadMap()
{
  std::vector<std::string> pcd_paths;
  string filePath = "/home/rtour/Desktop/data/2019-12-31-14-32-00-886/Lidar/lidar0/";
  vector<string> files;
  //vector<string> filesname;

  //获取该路径下的所有文件路径
  get_filelist_from_dir(filePath, files);
  ros::NodeHandle n;
  pcd_pub = n.advertise<sensor_msgs::PointCloud2>("points_raw", 1, true);
  //遍历所有路径
  for (int i = 1; i < files.size(); ++i) {
        string dir = filePath;
        std::string path(dir.append(files[i]));
        pcd_paths.push_back(path);
        sensor_msgs::PointCloud2 pcd;
        if (pcl::io::loadPCDFile(path, pcd) == -1) {
          std::cerr << "load failed " << path << std::endl;
        }
        int err = 0;
        // Give time to set up pub/sub
        ros::WallDuration(0.1).sleep();
        publish_pcd(pcd,&err);
   }
}
void publish_pcd(sensor_msgs::PointCloud2 pcd, const int* errp = NULL)
{
  if (pcd.width != 0) {
    cout<<"pub"<<endl;
    pcd.header.frame_id = "/velodyne";
    ros::Time topic_publish_time = ros::Time::now();
    pcd.header.stamp = topic_publish_time;
    pcd_pub.publish(pcd);

    if (errp == NULL || *errp == 0) {
      //stat_msg.data = true;
      //stat_pub.publish(stat_msg);
    }
  }
}

3.平移和旋转pcd

string filePath = "/home/rtour/.autoware/lz/xxtest.pcd";
        pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
        if (pcl::io::loadPCDFile (filePath, *source_cloud) < 0)  {
          std::cout << "Error loading point cloud " << filePath << std::endl << std::endl;
          return;
        }

      /* Reminder: how transformation matrices work :
               |-------> This column is the translation
        | 1 0 0 x |  \
        | 0 1 0 y |   }-> The identity 3x3 matrix (no rotation) on the left
        | 0 0 1 z |  /
        | 0 0 0 1 |    -> We do not use this line (and it has to stay 0,0,0,1)

        METHOD #1: Using a Matrix4f
        This is the "manual" method, perfect to understand but error prone !
      */

      // Define a rotation matrix (see https://en.wikipedia.org/wiki/Rotation_matrix)
      float theta = -M_PI/3; // The angle of rotation in radians
      /*  METHOD #2: Using a Affine3f
        This method is easier and less error prone
      */
      Eigen::Affine3f transform_2 = Eigen::Affine3f::Identity();
      // Define a translation 
      transform_2.translation() << 31.935742, 720.038504 ,6.741113;
      // The same rotation matrix as before; theta radians arround Z axis
      transform_2.rotate (Eigen::AngleAxisf (theta, Eigen::Vector3f::UnitZ()));
      // Print the transformation
      printf ("\nMethod #2: using an Affine3f\n");
      std::cout << transform_2.matrix() << std::endl;
      // Executing the transformation
      std::cout << "transform start" << std::endl;
      pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
      // You can either apply transform_1 or transform_2; they are the same
      pcl::transformPointCloud (*source_cloud, *transformed_cloud, transform_2);

     //保存为一个新的pcd文件 pcl::io::savePCDFileASCII("/home/rtour/.autoware/lz/jh.pcd", *transformed_cloud);
std::cout << "transform end" << std::endl;
相关标签: 无人驾驶