欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【leetcode】Unique Paths II(动态规划)

程序员文章站 2022-07-12 12:50:57
...

63. Unique Paths II

leetcode题目

题目描述

Discuss
Pick One

Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.

题解

使用动态规划自底向上解决,设状态f[i][j]为(1,1)到(i,j)的路线条数,仅能向右向下走,可得状态转移方程:
注意:
1. 第一列如果某一行有障碍物,后面的行全为0
2. 若起点终点有障碍,直接返回0

f[i][j] = f[i-1][j]+f[i][j-1]

Solution1:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();

        if (obstacleGrid[0][0] == 1 | obstacleGrid[m-1][n-1] == 1) {
            return 0;
        }
        vector<int>f(n,0);
        f[0] = 1;
        for (int i = 0; i < m; i++) {
            // 第一列如果某一行有障碍物,后面的行全为0
            f[0] = f[0] == 0 ? 0 : (obstacleGrid[i][0] ? 0 : 1);
            for (int j = 0; j < n; j++) {
                // f[i][j]=f[i-1][j]+f[i][j-1]
                f[j] = obstacleGrid[i][j] ? 0:(f[j]+f[j-1]);

            }
        }
        return f[n-1];
    }
};