欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Longest Increasing Path in a Matrix

程序员文章站 2022-07-10 09:18:26
...
Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]
Return 4
The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]
Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

我们采用DFS+memory的方法,就是在DFS的同时,记录当前元素所能构成的最大长度,如果下次再访问到这个点的时候直接返回这个点在memory中的值就可以了。时间复杂度为O(m*n),空间复杂度也是O(m*n)。代码如下:
public class Solution {
    public int longestIncreasingPath(int[][] matrix) {
        if(matrix == null || matrix.length == 0 || matrix[0].length == 0) return 0;
        int[][] memory = new int[matrix.length][matrix[0].length];
        int max = 1;
        for(int i = 0; i < matrix.length; i++) {
            for(int j = 0; j < matrix[0].length; j++) {
                max = Math.max(max, getLength(i, j, Integer.MIN_VALUE, memory, matrix));
            }
        }
        return max;
    }
    
    public int getLength(int i, int j, int min, int[][] memory, int[][] matrix) {
        if(i < 0 || j < 0 || i == matrix.length || j == matrix[0].length || matrix[i][j] <= min)
            return 0;
        if(memory[i][j] != 0) 
            return memory[i][j];
        min = matrix[i][j];
        int a = getLength(i - 1, j, min, memory, matrix) + 1;
        int b = getLength(i + 1, j, min, memory, matrix) + 1;
        int c = getLength(i, j + 1, min, memory, matrix) + 1;
        int d = getLength(i, j - 1, min, memory, matrix) + 1;
        memory[i][j] = Math.max(a, Math.max(b, Math.max(c, d)));
        return memory[i][j]; 
    }
}
相关标签: DFS Memorization