欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python实现简单的语音识别系统

程序员文章站 2022-07-09 18:16:34
最近认识了一个做Python语音识别的朋友,聊天时候说到,未来五到十年,Python人工智能会在国内掀起一股狂潮,对各种应用的冲击,不下于淘宝对实体经济的冲击。在本地(江苏...

最近认识了一个做Python语音识别的朋友,聊天时候说到,未来五到十年,Python人工智能会在国内掀起一股狂潮,对各种应用的冲击,不下于淘宝对实体经济的冲击。在本地(江苏某三线城市)做这一行,短期可能显不出效果,但从长远来看,绝对是一个高明的选择。朋友老家山东的,毕业来这里创业,也是十分有想法啊。

将AI课上学习的知识进行简单的整理,可以识别简单的0-9的单个语音。基本方法就是利用库函数提取mfcc,然后计算误差矩阵,再利用动态规划计算累积矩阵。并且限制了匹配路径的范围。具体的技术网上很多,不再细谈。

现有缺点就是输入的语音长度都是1s,如果不固定长度则识别效果变差。改进思路是提取有效语音部分。但是该部分尚未完全做好,只写了一个原形函数,尚未完善。

Python实现简单的语音识别系统

Python实现简单的语音识别系统

import wave
import numpy as np
import matplotlib.pyplot as plt
from python_speech_features import mfcc
from math import cos,sin,sqrt,pi
def read_file(file_name):
  with wave.open(file_name,'r') as file:
    params = file.getparams()
    _, _, framerate, nframes = params[:4] 
    str_data = file.readframes(nframes)
    wave_data = np.fromstring(str_data, dtype = np.short)
    time = np.arange(0, nframes) * (1.0/framerate)
    return wave_data, time 
  return index1,index2
def find_point(data):
  count1,count2 = 0,0
  for index,val in enumerate(data):
    if count1 <40:
      count1 = count1+1 if abs(val)>0.15 else 0
      index1 = index
    if count1==40 and count2 <5:
      count2 = count2+1 if abs(val)<0.001 else 0
      index2 = index
    if count2==5:break
  return index1,index2
def select_valid(data):
  start,end = find_point(normalized(data))
  print(start,end)
  return data[start:end]
def normalized(a):
  maximum = max(a)
  minimum = min(a)
  return a/maximum

def compute_mfcc_coff(file_prefix = ''):
  mfcc_feats = []
  s = range(10)
  I = [0,3,4,8]
  II = [5,7,9]
  Input = {'':s,'I':I,'II':II,'B':s}
  for index,file_name in enumerate(file_prefix+'{0}.wav'.format(i) for i in Input[file_prefix]):
    data,time = read_file(file_name)
    #data = select_valid(data)
    #if file_prefix=='II':data = select_valid(data)

    mfcc_feat = mfcc(data,48000)[:75]
    mfcc_feats.append(mfcc_feat)
  t = np.array(mfcc_feats)
  return np.array(mfcc_feats)
def create_dist():

  for i,m_i in enumerate(mfcc_coff_input):#get the mfcc of input
    for j,m_j in enumerate(mfcc_coff):#get the mfcc of dataset
      #build the distortion matrix bwtween i wav and j wav
      N = len(mfcc_coff[0])
      distortion_mat = np.array([[0]*len(m_i) for i in range(N)],dtype = np.double)
      for k1,mfcc1 in enumerate(m_i):
        for k2,mfcc2 in enumerate(m_j):
          distortion_mat[k1][k2] = sqrt(sum((mfcc1[1:]-mfcc2[1:])**2))
      yield i,j,distortion_mat

def create_Dist():

  for _i,_j,dist in create_dist():
    N = len(dist)
    Dist = np.array([[0]*N for i in range(N)],dtype = np.double)
    Dist[0][0] = dist[0][0]
    for i in range(N):
      for j in range(N):
        if i|j ==0:continue
        pos = [(i-1,j),(i,j-1),(i-1,j-1)]
        Dist[i][j] = dist[i][j] + min(Dist[k1][k2] for k1,k2 in pos if k1>-1 and k2>-1)


    #if _i==0 and _j==1 :print(_i,_j,'\n',Dist,len(Dist[0]),len(Dist[1]))
    yield _i,_j,Dist
def search_path(n):
  comparison = np.array([[0]*10 for i in range(n)],dtype = np.double)
  for _i,_j,Dist in create_Dist():
    N = len(Dist)
    cut_off = 5
    row = [(d,N-1,j) for j,d in enumerate(Dist[N-1]) if abs(N-1-j)<=cut_off]
    col = [(d,i,N-1) for i,d in enumerate(Dist[:,N-1]) if abs(N-1-i)<=cut_off]
    min_d,min_i,min_j = min(row+col )
    comparison[_i][_j] = min_d
    optimal_path_x,optimal_path_y = [min_i],[min_j]
    while min_i and min_j:
      optimal_path_x.append(min_i)
      optimal_path_y.append(min_j)
      pos = [(min_i-1,min_j),(min_i,min_j-1),(min_i-1,min_j-1)]
      #try:
      min_d,min_i,min_j = min(((Dist[int(k1)][int(k2)],k1,k2) for k1,k2 in pos\
      if abs(k1-k2)<=cut_off))

    if _i==_j and _i==4:
      plt.scatter(optimal_path_x[::-1],optimal_path_y[::-1],color = 'red')
      plt.show()
  return comparison

mfcc_coff_input = []
mfcc_coff = []

def match(pre):
  global mfcc_coff_input
  global mfcc_coff
  mfcc_coff_input = compute_mfcc_coff(pre)
  compare = np.array([[0]*10 for i in range(len(mfcc_coff_input))],dtype = np.double)
  for prefix in ['','B']:
    mfcc_coff = compute_mfcc_coff(prefix)
    compare += search_path(len(mfcc_coff_input))
  for l in compare:
    print([int(x) for x in l])
    print(min(((val,index)for index,val in enumerate(l)))[1])
data,time = read_file('8.wav')
match('I')
match('II')

总结

以上就是本文关于Python实现简单的语音识别系统的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Python用户推荐系统曼哈顿算法实现完整代码

Python编程使用tkinter模块实现计算器软件完整代码示例

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!