欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python图像识别+KNN求解数独

程序员文章站 2022-07-08 16:28:49
Python图像识别+KNN求解数独最近一直在玩数独,突发奇想实现这个功能,搜了一下没有相关教程,自己拼拼凑凑研究了一个,数独的解法用的是现有大神发出来的,具体网址看的比较多了丢掉了,非常抱歉。其中knn分类是参考新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;...

Python-opencv+KNN求解数独

最近一直在玩数独,突发奇想实现图像识别求解数独,输入到输出平均需要0.5s。

整体思路大概就是识别出图中数字生成list,然后求解。

输入输出demo

数独采用的是微软自带的Microsoft sudoku软件随便截取的图像,如下图所示:
Python图像识别+KNN求解数独经过程序求解后,得到的结果如下图所示:
Python图像识别+KNN求解数独

程序具体流程

程序整体流程如下图所示:
Python图像识别+KNN求解数独

读入图像后,根据求解轮廓信息找到数字所在位置,以及不包含数字的空白位置,提取数字信息通过KNN识别,识别出数字;无数字信息的在list中置0;生成未求解数独list,之后求解数独,将信息在原图中显示出来。

# -*-coding:utf-8-*-
import os
import cv2 as cv
import numpy as np
import time

####################################################
#寻找数字生成list
def find_dig_(img, train_set):
    if img is None:
        print("无效的图片!")
        os._exit(0)
        return
    _, thre = cv.threshold(img, 230, 250, cv.THRESH_BINARY_INV)
    _, contours, hierarchy = cv.findContours(thre, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
    sudoku_list = []
    boxes = []
    for i in range(len(hierarchy[0])):
        if hierarchy[0][i][3] == 0:  # 表示父轮廓为 0
            boxes.append(hierarchy[0][i])
    # 提取数字
    nm = []
    for j in range(len(boxes)):    # 此处len(boxes)=81
        if boxes[j][2] != -1:
            x, y, w, h = cv.boundingRect(contours[boxes[j][2]])
            nm.append([x, y, w, h])
            # 在原图中框选各个数字
            cropped = img[y:y + h, x:x + w]
            im = img_pre(cropped)			#预处理
            AF = incise(im)				#切割数字图像
            result = identification(train_set, AF, 7)		#knn识别
            sudoku_list.insert(0, int(result))				#生成list
        else:
            sudoku_list.insert(0, 0)
            
    if len(sudoku_list) == 81:
        sudoku_list= np.array(sudoku_list)
        sudoku_list= sudoku_list.reshape((9, 9))
        print("old_sudoku -> \n", sudoku_list)
        return sudoku_list, contours, hierarchy
    else:
        print("无效的图片!")
        os._exit(0)

######################################################
#KNN算法识别数字
def img_pre(cropped):
    # 预处理数字图像
    im = np.array(cropped)  # 转化为二维数组
    for i in range(im.shape[0]):  # 转化为二值矩阵
        for j in range(im.shape[1]):
            # print(im[i, j])
            if im[i, j] != 255:
                im[i, j] = 1
            else:
                im[i, j] = 0
    return im


# 提取图片特征
def feature(A):
    midx = int(A.shape[1] / 2) + 1
    midy = int(A.shape[0] / 2) + 1
    A1 = A[0:midy, 0:midx].mean()
    A2 = A[midy:A.shape[0], 0:midx].mean()
    A3 = A[0:midy, midx:A.shape[1]].mean()
    A4 = A[midy:A.shape[0], midx:A.shape[1]].mean()
    A5 = A.mean()
    AF = [A1, A2, A3, A4, A5]
    return AF


# 切割图片并返回每个子图片特征
def incise(im):
    # 竖直切割并返回切割的坐标
    a = [];
    b = []
    if any(im[:, 0] == 1):
        a.append(0)
    for i in range(im.shape[1] - 1):
        if all(im[:, i] == 0) and any(im[:, i + 1] == 1):
            a.append(i + 1)
        elif any(im[:, i] == 1) and all(im[:, i + 1] == 0):
            b.append(i + 1)
    if any(im[:, im.shape[1] - 1] == 1):
        b.append(im.shape[1])
    # 水平切割并返回分割图片特征
    names = locals();
    AF = []
    for i in range(len(a)):
        names['na%s' % i] = im[:, range(a[i], b[i])]
        if any(names['na%s' % i][0, :] == 1):
            c = 0
        else:
            for j in range(names['na%s' % i].shape[0]):
                if j < names['na%s' % i].shape[0] - 1:
                    if all(names['na%s' % i][j, :] == 0) and any(names['na%s' % i][j + 1, :] == 1):
                        c = j
                        break
                else:
                    c = j
        if any(names['na%s' % i][names['na%s' % i].shape[0] - 1, :] == 1):
            d = names['na%s' % i].shape[0] - 1
        else:
            for j in range(names['na%s' % i].shape[0]):
                if j < names['na%s' % i].shape[0] - 1:
                    if any(names['na%s' % i][j, :] == 1) and all(names['na%s' % i][j + 1, :] == 0):
                        d = j + 1
                        break
                else:
                    d = j
        names['na%s' % i] = names['na%s' % i][range(c, d), :]
        AF.append(feature(names['na%s' % i]))  # 提取特征
        for j in names['na%s' % i]:
            pass
    return AF


# 训练已知图片的特征
def training():
    train_set = {}
    for i in range(9):
        value = []
        for j in range(15):
            ima = cv.imread('E:/test_image/knn_test/{}/{}.png'.format(i + 1, j + 1), 0)
            im = img_pre(ima)
            AF = incise(im)
            value.append(AF[0])
        train_set[i + 1] = value

    return train_set


# 计算两向量的距离
def distance(v1, v2):
    vector1 = np.array(v1)
    vector2 = np.array(v2)
    Vector = (vector1 - vector2) ** 2
    distance = Vector.sum() ** 0.5
    return distance


# 用最近邻算法识别单个数字
def knn(train_set, V, k):
    key_sort = [11] * k
    value_sort = [11] * k
    for key in range(1, 10):
        for value in train_set[key]:
            d = distance(V, value)
            for i in range(k):
                if d < value_sort[i]:
                    for j in range(k - 2, i - 1, -1):
                        key_sort[j + 1] = key_sort[j]
                        value_sort[j + 1] = value_sort[j]
                    key_sort[i] = key
                    value_sort[i] = d
                    break
    max_key_count = -1
    key_set = set(key_sort)
    for key in key_set:
        if max_key_count < key_sort.count(key):
            max_key_count = key_sort.count(key)
            max_key = key
    return max_key


# 生成数字
def identification(train_set, AF, k):
    result = ''
    for i in AF:
        key = knn(train_set, i, k)
        result = result + str(key)
    return result



######################################################
######################################################
#求解数独
def get_next(m, x, y):
    # 获得下一个空白格在数独中的坐标。
    :param m 数独矩阵
    :param x 空白格行数
    :param y 空白格列数
    """
    for next_y in range(y + 1, 9):  # 下一个空白格和当前格在一行的情况
        if m[x][next_y] == 0:
            return x, next_y
    for next_x in range(x + 1, 9):  # 下一个空白格和当前格不在一行的情况
        for next_y in range(0, 9):
            if m[next_x][next_y] == 0:
                return next_x, next_y
    return -1, -1  # 若不存在下一个空白格,则返回 -1-1


def value(m, x, y):
    # 返回符合"每个横排和竖排以及九宫格内无相同数字"这个条件的有效值。
  
    i, j = x // 3, y // 3
    grid = [m[i * 3 + r][j * 3 + c] for r in range(3) for c in range(3)]
    v = set([x for x in range(1, 10)]) - set(grid) - set(m[x]) - \
        set(list(zip(*m))[y])
    return list(v)


def start_pos(m):
    # 返回第一个空白格的位置坐标
    for x in range(9):
        for y in range(9):
            if m[x][y] == 0:
                return x, y
    return False, False  # 若数独已完成,则返回 False, False


def try_sudoku(m, x, y):
    # 试着填写数独
    for v in value(m, x, y):
        m[x][y] = v
        next_x, next_y = get_next(m, x, y)
        if next_y == -1:  # 如果无下一个空白格
            return True
        else:
            end = try_sudoku(m, next_x, next_y)  # 递归
            if end:
                return True
            m[x][y] = 0  # 在递归的过程中,如果数独没有解开,
            # 则回溯到上一个空白格


def sudoku_so(m):
    x, y = start_pos(m)
    try_sudoku(m, x, y)
    print("new_sudoku -> \n", m)
    return m

###################################################
# 将结果绘制到原图
def draw_answer(img, contours, hierarchy, new_sudoku_list ):
    new_sudoku_list = new_sudoku_list .flatten().tolist()
    for i in range(len(contours)):
        cnt = contours[i]
        if hierarchy[0, i, -1] == 0:
            num = new_soduku_list.pop(-1)
            if hierarchy[0, i, 2] == -1:
                x, y, w, h = cv.boundingRect(cnt)
                cv.putText(img, "%d" % num, (x + 19, y + 56), cv.FONT_HERSHEY_SIMPLEX, 1.8, (0, 0, 255), 2)  # 填写数字
    cv.imwrite("E:/answer.png", img)


if __name__ == '__main__':
    t1 = time.time()
    train_set = training()
    img = cv.imread('E:/test_image/python_test_img/Sudoku.png')
    img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    sudoku_list, contours, hierarchy = find_dig_(img_gray, train_set)
    new_sudoku_list = sudoku_so(sudoku_list)
    draw_answer(img, contours, hierarchy, new_sudoku_list )
    print("time :",time.time()-t1)

PS:
使用KNN算法需要创建训练集,数独*涉及9个数字,“1,2,3,4,5,6,7,8,9”各15幅图放入文件夹中,如下图所示。
Python图像识别+KNN求解数独

本文地址:https://blog.csdn.net/m0_37968030/article/details/109615844