欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现自动解数独小程序

程序员文章站 2023-11-11 20:15:10
跟朋友最近聊起来数独游戏,突发奇想使用python编写一个自动计算数独解的小程序。 数独的规则不再过多阐述,在此描述一下程序的主要思路: (当前程序只针对于简单的数独,...

跟朋友最近聊起来数独游戏,突发奇想使用python编写一个自动计算数独解的小程序。

数独的规则不再过多阐述,在此描述一下程序的主要思路:

(当前程序只针对于简单的数独,更复杂的还待深入挖掘)

1.计算当前每个空格可能的取值集合,并将空格顺序值对应取值集合置于字典中;

2.对取值集合位数为1,即空格处为单一取值的进行赋值,(填入动作),重复1刷新字典直到字典为空位置;

当前实现如下:

1.将数独输入列表中,并定义函数count_candinate_number(j)根据数独规则计算每一个为0的位置的当前可能取值:

#编辑数独题目,将题目输入列表中
question = [6,0,7,0,0,0,9,0,3,
  0,0,8,0,0,7,0,0,0,
  3,0,0,0,8,2,0,7,5,
  0,1,2,3,0,5,0,0,0,
  0,0,6,0,0,0,5,0,0,
  0,0,0,4,0,6,7,1,0,
  2,6,0,7,4,0,0,0,8,
  0,0,0,8,0,0,6,0,0,
  7,0,5,0,0,0,1,0,9]
 
# print(question[0])
 
#返回当前数独为0的空格中所有可能取值
def count_candidate_number(j):
 exist_all_number = [] #当前横竖大方格内所有出现的数字集
 candidate_number = [] #该方格内所有的数字候选集
 sd_row = int(j) // 9 #行
 sd_column = int(j) % 9 #列
 
 #用迭代器写
 exist_all_number_part1 = [question[i+sd_row*9] for i in range(9)] #横-出现的所有数字集
 exist_all_number_part2 = [question[i*9+sd_column] for i in range(9)] #竖-出现的所有数字集
 exist_all_number_part3 = [question[((j//9)//3)*27+((j % 9)//3)*3+i] for i in range(3)]+[question[((j//9)//3)*27+((j % 9)//3)*3+9+i] for i in range(3)]+[question[((j//9)//3)*27+((j % 9)//3)*3+18+i] for i in range(3)] #大方块-出现的所有数字集
 exist_all_number = list(set(exist_all_number_part1+exist_all_number_part2+exist_all_number_part3))  #对出现所有的数字集组合及去重
 # print(exist_all_number)
 
 #用循环写
 # for i in range(9):
 # if question[i+sd_row*9] not in exist_all_number:
 #  exist_all_number.append(question[i+sd_row*9])
 # if question[i*9 + sd_cloumn] not in exist_all_number:
 #  exist_all_number.append(question[i*9 + sd_cloumn])
 # # print(exist_all_number)
 
 #迭代器写
 candidate_number = [i for i in range(1, 10) if i not in exist_all_number] #对可能取值进行迭代输出
 
 #用循环写
 # for i in range(1,10):
 # if i not in exist_all_number:
 #  candidate_number.append(i)
 # print(candidate_number)
 
 return candidate_number

2.定义函数求解对应每个为0的位置的可能求解,并将位置信息与可能求解以键-键值的形式存储于字典中:

#对数组中每个为0的空格列出所有可能的取值数集,并放置于字典中
def all_possible_candidate_number():
 all_possible_candidate_number = {i:count_candidate_number(i) for i in range(81) if question[i] == 0}
 return all_possible_candidate_number
 # print(all_possible_candidate_number)

3.对每一个位置的可能求解进行判断,若可能解只有一个,则填入该解,循环直至数独求解完成

def main_count():
 answer_sudoku = question
 candidate_number_dic = {}
 while true:
 candidate_number_dic = all_possible_candidate_number() #在每次循环之前刷当前每个为0的空格,所有的取值集合
 if candidate_number_dic == {}:    #如果为空,则证明没有为0的空格,则为求解
  answer_sudoku = question    #对answer_sudoku赋值,并打印
  print("已求解",answer_sudoku)
  break
 else:
  for eachkey,eachvalue in candidate_number_dic.items(): #对字典中位数为1的取值集合,既确定该数字变为当前应取值
  if len(eachvalue) == 1:
   answer_sudoku[eachkey] = eachvalue[0]
   print(eachkey,eachvalue[0])   #打印对应键值及对应数值
  pass
 
if __name__ == '__main__':
 main_count()

程序运行结果:

d:\pythonwokr\venv\scripts\python.exe d:/pythonwokr/数独.py
已求解 [6, 2, 7, 5, 1, 4, 9, 8, 3, 5, 4, 8, 9, 3, 7, 2, 6, 1, 3, 9, 1, 6, 8, 2, 4, 7, 5, 4, 1, 2, 3, 7, 5, 8, 9, 6, 9, 7, 6, 1, 2, 8, 5, 3, 4, 8, 5, 3, 4, 9, 6, 7, 1, 2, 2, 6, 9, 7, 4, 1, 3, 5, 8, 1, 3, 4, 8, 5, 9, 6, 2, 7, 7, 8, 5, 2, 6, 3, 1, 4, 9]
 
process finished with exit code 0

程序到这里就结束了,下一步拓展是对于若不存在单独唯一解的情况,待续。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。