欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TensorFlow实现线性回归

程序员文章站 2022-07-06 21:54:46
...

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

特点:只有一个自变量的情况称为单变量回归,大于一个自变量情况的叫做多元回归

通用公式:h(w) = w1x1+w2x2+w3x3+...+b=wTx + b

根据数据建立回归模型,w1x1+w2x2+…..+b = y,通过真实值与预测值之间建立误差,使用梯度下降优化得到损失最小对应的权重和偏置。最终确定模型的权重和偏置参数,最后可以用这些参数进行预测。

线性回归案例:

假设随机指定100个点,只有一个特征
数据本身的分布为 y = 0.7 * x + 0.8
这里将数据分布的规律确定,是为了使我们训练出的参数跟真实的参数(即0.7和0.8)比较是否训练准确

 

TensorFlow计算API:
运算

矩阵运算
tf.matmul(x, w)
平方
tf.square(error)
均值
tf.reduce_mean(error)


梯度下降优化

tf.train.GradientDescentOptimizer(learning_rate)
梯度下降优化
learning_rate:学习率,一般为0~1之间比较小的值
method:
minimize(loss)
return:梯度下降op

 

步骤分析:
1、准备数据的特征值和目标值 inputs

获取特征值目标值数据数据

    def inputs(self):
        """
        获取特征值目标值数据数据
        :return:
        """
        x_data = tf.random_normal([100, 1], mean=1.0, stddev=1.0, name="x_data")
        y_true = tf.matmul(x_data, [[0.7]]) + 0.8

        return x_data, y_true

 

2、根据特征值建立线性回归模型(确定参数个数形状) inference

根据输入数据建立模型,模型的参数必须使用变量OP创建

    def inference(self, feature):
        """
        根据输入数据建立模型
        :param feature:
        :param label:
        :return:
        """
        with tf.variable_scope("linea_model"):
            # 建立回归模型,分析别人的数据的特征数量--->权重数量, 偏置b
            # 由于有梯度下降算法优化,所以一开始给随机的参数,权重和偏置
            # 被优化的参数,必须得使用变量op去定义
            # 变量初始化权重和偏置
            # weight 2维[1, 1]    bias [1]
            # 变量op当中会有trainable参数决定是否训练
            self.weight = tf.Variable(tf.random_normal([1, 1], mean=0.0, stddev=1.0),
                                      name="weights")

            self.bias = tf.Variable(0.0, name='biases')

            # 建立回归公式去得出预测结果
            y_predict = tf.matmul(feature, self.weight) + self.bias

        return y_predict

  

3、根据模型得出预测结果,建立损失 loss

求出模型跟真实数据之间的损失
 def loss(self, y_true, y_predict):
        """
        目标值和真实值计算损失
        :return: loss
        """
        # 均方误差公式
        loss = tf.reduce_mean(tf.square(y_true - y_predict))

        return loss

  

4、梯度下降优化器优化损失 sgd_op

使用梯度下降优化器优化
    def sgd_op(self, loss):
        """
        获取训练OP
        :return:
        """
        # 填充学习率:0 ~ 1    学习率是非常小,
        # 学习率大小决定你到达损失一个步数多少
        # 最小化损失
        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

        return train_op

 

学习率的设置、步长的设置与梯度爆炸
学习率越大,训练到较好结果的步长越小;学习率越小,训练到较好结果的步长越大。但是学习过大会出现梯度爆炸现象(在极端情况下,权重的值变得非常大,以至于溢出,导致 NaN 值)

如何解决梯度爆炸问题:

1. 重新设计网络

2. 调整学习率

3. 使用梯度截断(在训练过程中检查和限制梯度的大小)

4. 使用**函数

 

 

变量的trainable设置观察
trainable的参数作用,指定是否训练

weight = tf.Variable(tf.random_normal([1, 1], mean=0.0, stddev=1.0), name="weights", trainable=False)

 

增加变量显示
目的:在TensorBoard当中观察模型的参数、损失值等变量值的变化

1、收集变量
tf.summary.scalar(name=’’,tensor) 收集对于损失函数和准确率等单值变量,name为变量的名字,tensor为值
tf.summary.histogram(name=‘’,tensor) 收集高维度的变量参数
tf.summary.image(name=‘’,tensor) 收集输入的图片张量能显示图片

 

# 收集张量的值
tf.summary.scalar("losses", loss)

tf.summary.histogram("w", self.weight)
tf.summary.histogram('b', self.bias)

2、合并变量写入事件文件
merged = tf.summary.merge_all()
运行合并:summary = sess.run(merged),每次迭代都需运行
添加:FileWriter.add_summary(summary,i),i表示第几次的值

 

# 合并变量
merged = tf.summary.merge_all()
# 生成事件文件,观察图结构

file_writer = tf.summary.FileWriter("./tmp/summary/", graph=sess.graph)

# 运行收集变量的结果
summary = sess.run(merged)

# 添加到文件
file_writer.add_summary(summary, i)

 

 

模型的保存与加载
tf.train.Saver(var_list=None,max_to_keep=5)
保存和加载模型(保存文件格式:checkpoint文件)
var_list:指定将要保存和还原的变量。它可以作为一个dict或一个列表传递.
max_to_keep:指示要保留的最近检查点文件的最大数量。创建新文件时,会删除较旧的文件。如果无或0,则保留所有检查点文件。默认为5(即保留最新的5个检查点文件。)

指定目录+模型名字
saver.save(sess, '/tmp/ckpt/test/myregression.ckpt')
saver.restore(sess, '/tmp/ckpt/test/myregression.ckpt')
如要判断模型是否存在,直接指定目录

checkpoint = tf.train.latest_checkpoint("./tmp/model/")

saver.restore(sess, checkpoint)

 

完整代码:

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

import tensorflow as tf

# 定义一些常用的命令行参数
# 训练步数
tf.app.flags.DEFINE_integer("max_step", 10, "训练模型的步数")
# 定义模型的路径
tf.app.flags.DEFINE_string("model_dir", "./tmp/model/myregression.ckpt ", "模型保存的路径+模型名字")

FLAGS = tf.app.flags.FLAGS


class MyLinearRegression(object):
    """
    自实现线性回归
    """

    def __init__(self):
        pass

    def inputs(self):
        """
        获取特征值目标值数据
        :return:
        """
        x_data = tf.random_normal([100, 1], mean=1.0, stddev=1.0, name="x_data")
        y_true = tf.matmul(x_data, [[0.7]]) + 0.8

        return x_data, y_true

    def inference(self, feature):
        """
        根据输入数据建立模型
        建立回归模型,分析别人的数据的特征数量--->权重数量, 偏置b
        :param feature:
        :return:
        """
        with tf.variable_scope("linea_model"):
            # 由于有梯度下降算法优化,所以一开始给随机的参数,权重和偏置
            # 被优化的参数,必须得使用变量op去定义
            # 变量初始化权重和偏置
            # weight 2维[1, 1]    bias [1]
            # 变量op当中会有trainable参数决定是否训练
            self.weight = tf.Variable(
                tf.random_normal([1, 1], mean=0.0, stddev=1.0),
                name="weights"
            )

            self.bias = tf.Variable(0.0, name='biases')

            # 建立回归公式去得出预测结果
            y_predict = tf.matmul(feature, self.weight) + self.bias

        return y_predict

    def loss(self, y_true, y_predict):
        """
        目标值和真实值计算损失
        求出我们模型跟真实数据之间的损失
        :return: loss
        """
        # 均方误差公式
        loss = tf.reduce_mean(tf.square(y_true - y_predict))

        return loss

    def merge_summary(self, loss):

        # 1、收集张量的值
        tf.summary.scalar("losses", loss)

        tf.summary.histogram("w", self.weight)
        tf.summary.histogram('b', self.bias)

        # 2、合并变量
        merged = tf.summary.merge_all()

        return merged

    def sgd_op(self, loss):
        """
        获取训练OP
        :return:
        """
        # 使用梯度下降优化器优化
        # 填充学习率:0 ~ 1    学习率是非常小,
        # 学习率大小决定你到达损失一个步数多少
        # 最小化损失
        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

        return train_op

    def train(self):
        """
        训练模型
        :param loss:
        :return:
        """

        g = tf.get_default_graph()

        with g.as_default():

            x_data, y_true = self.inputs()

            y_predict = self.inference(x_data)

            loss = self.loss(y_true, y_predict)

            train_op = self.sgd_op(loss)

            # 收集观察的结果值
            merged = self.merge_summary(loss)

            saver = tf.train.Saver()

            with tf.Session() as sess:

                sess.run(tf.global_variables_initializer())

                # 在没训练,模型的参数值
                print("初始化的权重:%f, 偏置:%f" % (self.weight.eval(), self.bias.eval()))

                # 加载模型
                checkpoint = tf.train.latest_checkpoint("./tmp/model/")
                if checkpoint:
                    print('Restoring', checkpoint)
                    saver.restore(sess, checkpoint)

                # 开启训练
                # 训练的步数(依据模型大小而定)
                print(FLAGS.max_step)
                for i in range(FLAGS.max_step):
                    sess.run(train_op)

                    # 生成事件文件,观察图结构
                    file_writer = tf.summary.FileWriter("./tmp/summary/", graph=sess.graph)

                    print("训练第%d步之后的损失:%f, 权重:%f, 偏置:%f" % (
                        i,
                        loss.eval(),
                        self.weight.eval(),
                        self.bias.eval()))

                    # 运行收集变量的结果
                    summary = sess.run(merged)

                    # 添加到文件
                    file_writer.add_summary(summary, i)

                    if i % 100 == 0:
                        # 保存的是会话当中的变量op值,其他op定义的值不保存
                        print(sess)
                        saver.save(sess, FLAGS.model_dir)


if __name__ == '__main__':
    lr = MyLinearRegression()
    lr.train()

 

训练结果:

TensorFlow实现线性回归

 

上一篇: tensorflow 线性回归

下一篇: 第一天