第一天
1.CopyOnWriteArrayList的原理和使用方法
CopyOnWriteArrayList:CopyOnWriteArrayList这是一个ArrayList的线程安全的变体,其原理大概可以通俗的理解为:初始化的时候只有一个容器,很常一段时间,这个容器数据、数量等没有发生变化的时候,大家(多个线程),都是读取(假设这段时间里只发生读取的操作)同一个容器中的数据,所以这样大家读到的数据都是唯一、一致、安全的,但是后来有人往里面增加了一个数据,这个时候CopyOnWriteArrayList 底层实现添加的原理是先copy出一个容器(可以简称副本),再往新的容器里添加这个新的数据,最后把新的容器的引用地址赋值给了之前那个旧的的容器地址,但是在添加这个数据的期间,其他线程如果要去读取数据,仍然是读取到旧的容器里的数据。
package com.base.java.test;
import java.util.ArrayList;
public class ListConcurrentTest{
private static final int THREAD_POOL_MAX_NUM = 10;
private List<String> mList = new ArrayList<String>();
public static void main(String args[]){
new ListConcurrentTest().start();
}
private void initData() {
for(int i = 0 ; i <= THREAD_POOL_MAX_NUM ; i ++){
this.mList.add("...... Line "+(i+1)+" ......");
}
}
private void start(){
initData();
ExecutorService service = Executors.newFixedThreadPool(THREAD_POOL_MAX_NUM);
for(int i = 0 ; i < THREAD_POOL_MAX_NUM ; i ++){
service.execute(new ListReader(this.mList));
service.execute(new ListWriter(this.mList,i));
}
service.shutdown();
}
private class ListReader implements Runnable{
private List<String> mList ;
public ListReader(List<String> list) {
this.mList = list;
}
@Override
public void run() {
if(this.mList!=null){
for(String str : this.mList){
System.out.println(Thread.currentThread().getName()+" : "+ str);
}
}
}
}
private class ListWriter implements Runnable{
private List<String> mList ;
private int mIndex;
public ListWriter(List<String> list,int index) {
this.mList = list;
this.mIndex = index;
}
@Override
public void run() {
if(this.mList!=null){
//this.mList.remove(this.mIndex);
this.mList.add("...... add "+mIndex +" ......");
}
}
}
}
上面的代码毋庸置疑会发生并发异常,直接运行看看效果:
所以目前最大的问题,在同一时间多个线程无法对同一个List进行读取和增删,否则就会抛出并发异常。
OK,既然出现了问题,那我们直接将ArrayList改成我们今天的主角,CopyOnWriteArrayList,再来进行测试,发现一点问题没有,运行正常。
所以我们不难发现CopyOnWriteArrayList完美解决了并发的问题。
原理:
现在我们知道怎么用了,那我们就来看看源代码,到底内部它是怎么运作的呢?
看add函数的代码:
/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link Collection#add})
*/
public boolean add(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);
newElements[len] = e;
setArray(newElements);
return true;
} finally {
lock.unlock();
}
}
final ReentrantLock lock = this.lock;
lock.lock();
首先使用上面的两行代码加上了锁,保证同一时间只能有一个线程在添加元素。
然后使用Arrays.copyOf(...)方法复制出另一个新的数组,而且新的数组的长度比原来数组的长度+1,副本复制完毕,新添加的元素也赋值添加完毕,最后又把新的副本数组赋值给了旧的数组,最后在finally语句块中将锁释放。
优点:
1.解决的开发工作中的多线程的并发问题。
缺点:
1.内存占有问题:很明显,两个数组同时驻扎在内存中,如果实际应用中,数据比较多,而且比较大的情况下,占用内存会比较大,针对这个其实可以用ConcurrentHashMap来代替。
2.数据一致性:CopyOnWrite容器只能保证数据的最终一致性,不能保证数据的实时一致性。所以如果你希望写入的的数据,马上能读到,请不要使用CopyOnWrite容器
2.SparseArray
SparseArray(稀疏数组).他是Android内部特有的api,标准的jdk是没有这个类的.在Android内部用来替代HashMap<Integer,E>这种形式,使用SparseArray更加节省内存空间的使用,SparseArray也是以key和value对数据进行保存的.使用的时候只需要指定value的类型即可.并且key不需要封装成对象类型.
楼主根据亲测,SparseArray存储数据占用的内存空间确实比HashMap要小一些.一会放出测试的数据在进行分析。我们首先看一下二者的结构特性.
HashMap是数组和链表的结合体,被称为链表散列.
SparseArray是单纯数组的结合.被称为稀疏数组,对数据保存的时候,不会有额外的开销.结构如下:
这就是二者的结构,我们需要看一下二者到底有什么差异...
首先是插入:
HashMap的正序插入:
System.out.println("<------------- 数据量100000 散列程度小 Map 倒序插入--------------->");
HashMap<Integer, String>map_2 = new HashMap<Integer, String>();
long start_map_2 = System.currentTimeMillis();
for(int i=MAX-1;i>=0;i--){
map_2.put(MAX-i-1, String.valueOf(MAX-i-1));
}
long map_memory_2 = Runtime.getRuntime().totalMemory();
long end_map_2 = System.currentTimeMillis()-start_map_2;
System.out.println("<---Map的插入时间--->"+end_map_2+"<---Map占用的内存--->"+map_memory_2);
//执行后的结果:
<------------- 数据量100000 Map 倒序插入--------------->
<---Map的插入时间--->836<---Map占用的内存--->28598272
SparseArray倒序插入:
System.out.println("<------------- 数据量100000 散列程度小 SparseArray 倒序插入--------------->");
SparseArray<String>sparse_2 = new SparseArray<String>();
long start_sparse_2 = System.currentTimeMillis();
for(int i=MAX-1;i>=0;i--){
sparse_2.put(i, String.valueOf(MAX-i-1));
}
long sparse_memory_2 = Runtime.getRuntime().totalMemory();
long end_sparse_2 = System.currentTimeMillis()-start_sparse_2;
System.out.println("<---Sparse的插入时间--->"+end_sparse_2+"<---Sparse占用的内存--->"+sparse_memory_2);
//执行后的结果
<------------- 数据量100000 SparseArray 倒序插入--------------->
<---Sparse的插入时间--->20222<---Sparse占用的内存--->23281664
通过上面的运行结果,我们仍然可以看到,SparseArray与HashMap无论是怎样进行插入,数据量相同时,前者都要比后者要省下一部分内存,但是效率呢?我们可以看到,在倒序插入的时候,SparseArray的插入时间和HashMap的插入时间远远不是一个数量级.由于SparseArray每次在插入的时候都要使用二分查找判断是否有相同的值被插入.因此这种倒序的情况是SparseArray效率最差的时候.
SparseArray的插入源码我们简单的看一下..
public void put(int key, E value) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key); //二分查找.
if (i >= 0) { //如果当前这个i在数组中存在,那么表示插入了相同的key值,只需要将value的值进行覆盖..
mValues[i] = value;
} else { //如果数组内部不存在的话,那么返回的数值必然是负数.
i = ~i; //因此需要取i的相反数.
//i值小于mSize表示在这之前. mKey和mValue数组已经被申请了空间.只是键值被删除了.那么当再次保存新的值的时候.不需要额外的开辟新的内存空间.直接对数组进行赋值即可.
if (i < mSize && mValues[i] == DELETED) {
mKeys[i] = key;
mValues[i] = value;
return;
}
//当需要的空间要超出,但是mKey中存在无用的数值,那么需要调用gc()函数.
if (mGarbage && mSize >= mKeys.length) {
gc();
// Search again because indices may have changed.
i = ~ContainerHelpers.binarySearch(mKeys, mSize, key);
}
//如果需要的空间大于了原来申请的控件,那么需要为key和value数组开辟新的空间.
if (mSize >= mKeys.length) {
int n = ArrayUtils.idealIntArraySize(mSize + 1);
//定义了一个新的key和value数组.需要大于mSize
int[] nkeys = new int[n];
Object[] nvalues = new Object[n];
// Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
//对数组进行赋值也就是copy操作.将原来的mKey数组和mValue数组的值赋给新开辟的空间的数组.目的是为了添加新的键值对.
System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
System.arraycopy(mValues, 0, nvalues, 0, mValues.length);
//将数组赋值..这里只是将数组的大小进行扩大..放入键值对的操作不在这里完成.
mKeys = nkeys;
mValues = nvalues;
}
//如果i的值没有超过mSize的值.只需要扩大mKey的长度即可.
if (mSize - i != 0) {
// Log.e("SparseArray", "move " + (mSize - i));
System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);
System.arraycopy(mValues, i, mValues, i + 1, mSize - i);
}
//这里是用来完成放入操作的过程.
mKeys[i] = key;
mValues[i] = value;
mSize++;
}
}
这就是SparseArray插入函数的源码.每次的插入方式都需要调用二分查找.因此这样在倒序插入的时候会导致情况非常的糟糕,效率上绝对输给了HashMap学过数据结构的大家都知道.Map在插入的时候会对冲突因子做出相应的决策.有非常好的处理冲突的方式.不需要遍历每一个值.因此无论是倒序还是正序插入的效率取决于处理冲突的方式,因此插入时牺牲的时间基本是相同的.
通过插入.我们还是可以看出二者的差异的.
我们再来看一下查找首先是HashMap的查找.
System.out.println("<------------- 数据量100000 Map查找--------------->");
HashMap<Integer, String>map = new HashMap<Integer, String>();
for(int i=0;i<MAX;i++){
map.put(i, String.valueOf(i));
}
long start_time =System.currentTimeMillis();
for(int i=0;i<MAX;i+=100){
map.get(i);
}
long end_time =System.currentTimeMillis()-start_time;
System.out.println(end_time);
//执行后的结果
<!---------查找的时间:175------------>
SparseArray的查找:
System.out.println("<------------- 数据量100000 SparseArray 查找--------------->");
SparseArray<String>sparse = new SparseArray<String>();
for(int i=0;i<10000;i++){
sparse.put(i, String.valueOf(i));
}
long start_time =System.currentTimeMillis();
for(int i=0;i<MAX;i+=10){
sparse.get(i);
}
long end_time =System.currentTimeMillis()-start_time;
System.out.println(end_time);
//执行后的结果
<!-----------查找的时间:239---------------->
我这里也简单的对查找的效率进行了测试.对一个数据或者是几个数据的查询.二者的差异还是非常小的.当数据量是100000条.查100000条的效率还是Map要快一点.数据量为10000的时候.这就差异性就更小.但是Map的查找的效率确实还是赢了一筹.
其实在我看来.在保存<Integer,E>时使用SparseArray去替换HashMap的主要原因还是因为内存的关系.我们可以看到.保存的数据量无论是大还是小,Map所占用的内存始终是大于SparseArray的.数据量100000条时SparseArray要比HashMap要节约27%的内存.也就是以牺牲效率的代价去节约内存空间.我们知道Android对内存的使用是极为苛刻的.堆区允许使用的最大内存仅仅16M.很容易出现OOM现象的发生.因此在Android中内存的使用是非常的重要的.因此官方才推荐去使用SparseArray<E>去替换HashMap<Integer,E>.官方也确实声明这种差异性不会超过50%.所以牺牲了部分效率换来内存其实在Android中也算是一种很好的选择吧.
3.ConnectivityService
上一篇: TensorFlow实现线性回归
下一篇: Tensorflow 之线性回归