pytorch学习3:逻辑回归
上一节介绍了简单的线性回归,如何在pytorch里面用最小二乘来拟合一些离散的点,这一节我们将开始简单的logistic回归,介绍图像分类问题,使用的数据是手写字体数据集MNIST。
logistic回归
logistic回归简单来说和线性回归是一样的,要做的运算同样是 y = w * x + b,logistic回归简单的是做二分类问题,使用sigmoid函数将所有的正数和负数都变成0-1之间的数,这样就可以用这个数来确定到底属于哪一类,可以简单的认为概率大于0.5即为第二类,小于0.5为第一类。
这就是sigmoid的图形
而我们这里要做的是多分类问题,对于每一个数据,我们输出的维数是分类的总数,比如10分类,我们输出的就是一个10维的向量,然后我们使用另外一个**函数,softmax。
首先导入torch里面专门做图形处理的一个库,torchvision,根据官方安装指南,你在安装pytorch的时候torchvision也会安装。
我们需要使用的是torchvision.transforms和torchvision.datasets以及torch.utils.data.DataLoader
首先DataLoader是导入图片的操作,里面有一些参数,比如batch_size和shuffle等,默认load进去的图片类型是PIL.Image.open的类型,如果你不知道PIL,简单来说就是一种读取图片的库
torchvision.transforms里面的操作是对导入的图片做处理,比如可以随机取(50, 50)这样的窗框大小,或者随机翻转,或者去中间的(50, 50)的窗框大小部分等等,但是里面必须要用的是transforms.ToTensor(),这可以将PIL的图片类型转换成tensor,这样pytorch才可以对其做处理
torchvision.datasets里面有很多数据类型,里面有官网处理好的数据,比如我们要使用的MNIST数据集,可以通过torchvision.datasets.MNIST()来得到,还有一个常使用的是torchvision.datasets.ImageFolder(),这个可以让我们按文件夹来取图片,和keras里面的flow_from_directory()类似,具体的可以去看看官方文档的介绍。
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import time
# 定义超参数
batch_size = 32
learning_rate = 1e-3
num_epoches = 100
# 下载训练集 MNIST 手写数字训练集
train_dataset = datasets.MNIST(
root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(
root='./data', train=False, transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
定义逻辑回归模型
# 定义 Logistic Regression 模型
class Logstic_Regression(nn.Module):
def __init__(self, in_dim, n_class):
super(Logstic_Regression, self).__init__()
self.logstic = nn.Linear(in_dim, n_class)
def forward(self, x):
out = self.logstic(x)
return out
定义误差,和优化函数
model = Logstic_Regression(28 * 28, 10) # 图片大小是28x28
use_gpu = torch.cuda.is_available() # 判断是否有GPU加速
if use_gpu:
model = model.cuda()
# 定义loss和optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
这里用交叉熵误差,SGD优化
模型训练
# 开始训练
for epoch in range(num_epoches):
print('*' * 10)
print('epoch {}'.format(epoch + 1))
since = time.time()
running_loss = 0.0
running_acc = 0.0
for i, data in enumerate(train_loader, 1):
img, label = data
img = img.view(img.size(0), -1) # 将图片展开成 28x28
if use_gpu:
img = Variable(img).cuda()
label = Variable(label).cuda()
else:
img = Variable(img)
label = Variable(label)
# 向前传播
out = model(img)
loss = criterion(out, label)
running_loss += loss.data[0] * label.size(0)
_, pred = torch.max(out, 1)
num_correct = (pred == label).sum()
running_acc += num_correct.data[0]
# 向后传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % 300 == 0:
print('[{}/{}] Loss: {:.6f}, Acc: {:.6f}'.format(
epoch + 1, num_epoches, running_loss / (batch_size * i),
running_acc / (batch_size * i)))
print('Finish {} epoch, Loss: {:.6f}, Acc: {:.6f}'.format(
epoch + 1, running_loss / (len(train_dataset)), running_acc / (len(
train_dataset))))
模型测试
model.eval()
eval_loss = 0.
eval_acc = 0.
for data in test_loader:
img, label = data
img = img.view(img.size(0), -1)
if use_gpu:
img = Variable(img, volatile=True).cuda()
label = Variable(label, volatile=True).cuda()
else:
img = Variable(img, volatile=True)
label = Variable(label, volatile=True)
out = model(img)
loss = criterion(out, label)
eval_loss += loss.data[0] * label.size(0)
_, pred = torch.max(out, 1)
num_correct = (pred == label).sum()
eval_acc += num_correct.data[0]
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
test_dataset)), eval_acc / (len(test_dataset))))
print('Time:{:.1f} s'.format(time.time() - since))
print()
# 保存模型
torch.save(model.state_dict(), './logstic.pth')