欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

pytorch学习3:逻辑回归

程序员文章站 2022-07-06 12:17:50
...

点击打开链接

上一节介绍了简单的线性回归,如何在pytorch里面用最小二乘来拟合一些离散的点,这一节我们将开始简单的logistic回归,介绍图像分类问题,使用的数据是手写字体数据集MNIST。

logistic回归

logistic回归简单来说和线性回归是一样的,要做的运算同样是 y = w * x + b,logistic回归简单的是做二分类问题,使用sigmoid函数将所有的正数和负数都变成0-1之间的数,这样就可以用这个数来确定到底属于哪一类,可以简单的认为概率大于0.5即为第二类,小于0.5为第一类。

pytorch学习3:逻辑回归

这就是sigmoid的图形

pytorch学习3:逻辑回归

而我们这里要做的是多分类问题,对于每一个数据,我们输出的维数是分类的总数,比如10分类,我们输出的就是一个10维的向量,然后我们使用另外一个**函数,softmax。

pytorch学习3:逻辑回归

首先导入torch里面专门做图形处理的一个库,torchvision,根据官方安装指南,你在安装pytorch的时候torchvision也会安装。

我们需要使用的是torchvision.transforms和torchvision.datasets以及torch.utils.data.DataLoader

首先DataLoader是导入图片的操作,里面有一些参数,比如batch_size和shuffle等,默认load进去的图片类型是PIL.Image.open的类型,如果你不知道PIL,简单来说就是一种读取图片的库

torchvision.transforms里面的操作是对导入的图片做处理,比如可以随机取(50, 50)这样的窗框大小,或者随机翻转,或者去中间的(50, 50)的窗框大小部分等等,但是里面必须要用的是transforms.ToTensor(),这可以将PIL的图片类型转换成tensor,这样pytorch才可以对其做处理

torchvision.datasets里面有很多数据类型,里面有官网处理好的数据,比如我们要使用的MNIST数据集,可以通过torchvision.datasets.MNIST()来得到,还有一个常使用的是torchvision.datasets.ImageFolder(),这个可以让我们按文件夹来取图片,和keras里面的flow_from_directory()类似,具体的可以去看看官方文档的介绍。


import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import time
# 定义超参数
batch_size = 32
learning_rate = 1e-3
num_epoches = 100

# 下载训练集 MNIST 手写数字训练集
train_dataset = datasets.MNIST(
    root='./data', train=True, transform=transforms.ToTensor(), download=True)

test_dataset = datasets.MNIST(
    root='./data', train=False, transform=transforms.ToTensor())

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

定义逻辑回归模型

# 定义 Logistic Regression 模型
class Logstic_Regression(nn.Module):
    def __init__(self, in_dim, n_class):
        super(Logstic_Regression, self).__init__()
        self.logstic = nn.Linear(in_dim, n_class)

    def forward(self, x):
        out = self.logstic(x)
        return out

定义误差,和优化函数

model = Logstic_Regression(28 * 28, 10)  # 图片大小是28x28
use_gpu = torch.cuda.is_available()  # 判断是否有GPU加速
if use_gpu:
    model = model.cuda()
# 定义loss和optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

这里用交叉熵误差,SGD优化

模型训练

# 开始训练
for epoch in range(num_epoches):
    print('*' * 10)
    print('epoch {}'.format(epoch + 1))
    since = time.time()
    running_loss = 0.0
    running_acc = 0.0
    for i, data in enumerate(train_loader, 1):
        img, label = data
        img = img.view(img.size(0), -1)  # 将图片展开成 28x28
        if use_gpu:
            img = Variable(img).cuda()
            label = Variable(label).cuda()
        else:
            img = Variable(img)
            label = Variable(label)
        # 向前传播
        out = model(img)
        loss = criterion(out, label)
        running_loss += loss.data[0] * label.size(0)
        _, pred = torch.max(out, 1)
        num_correct = (pred == label).sum()
        running_acc += num_correct.data[0]
        # 向后传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if i % 300 == 0:
            print('[{}/{}] Loss: {:.6f}, Acc: {:.6f}'.format(
                epoch + 1, num_epoches, running_loss / (batch_size * i),
                running_acc / (batch_size * i)))
    print('Finish {} epoch, Loss: {:.6f}, Acc: {:.6f}'.format(
        epoch + 1, running_loss / (len(train_dataset)), running_acc / (len(
            train_dataset))))

模型测试

model.eval()
    eval_loss = 0.
    eval_acc = 0.
    for data in test_loader:
        img, label = data
        img = img.view(img.size(0), -1)
        if use_gpu:
            img = Variable(img, volatile=True).cuda()
            label = Variable(label, volatile=True).cuda()
        else:
            img = Variable(img, volatile=True)
            label = Variable(label, volatile=True)
        out = model(img)
        loss = criterion(out, label)
        eval_loss += loss.data[0] * label.size(0)
        _, pred = torch.max(out, 1)
        num_correct = (pred == label).sum()
        eval_acc += num_correct.data[0]
    print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
        test_dataset)), eval_acc / (len(test_dataset))))
    print('Time:{:.1f} s'.format(time.time() - since))
    print()

# 保存模型
torch.save(model.state_dict(), './logstic.pth')