谈谈Go语言的反射三定律
简介
reflection(反射)在计算机中表示 程序能够检查自身结构的能力,尤其是类型。它是元编程的一种形式,也是最容易让人迷惑的一部分。
虽然go语言没有继承的概念,但为了便于理解,如果一个struct a 实现了 interface b的所有方法时,我们称之为“继承”。
类型和接口
反射建立在类型系统之上,因此我们从类型基础知识说起。
go是静态类型语言。每个变量都有且只有一个静态类型,在编译时就已经确定。比如 int、float32、*mytype、[]byte。 如果我们做出如下声明:
type myint int var i int var j myint
上面的代码中,变量 i 的类型是 int,j 的类型是 myint。 所以,尽管变量 i 和 j 具有共同的底层类型 int,但它们的静态类型并不一样。不经过类型转换直接相互赋值时,编译器会报错。
关于类型,一个重要的分类是 接口类型(interface),每个接口类型都代表固定的方法集合。一个接口变量就可以存储(或“指向”,接口变量类似于指针)任何类型的具体值,只要这个值实现了该接口类型的所有方法。一组广为人知的例子是 io.reader
和 io.writer
, reader 和 writer 类型来源于 io包,声明如下:
// reader is the interface that wraps the basic read method. type reader interface { read(p []byte) (n int, err error) } // writer is the interface that wraps the basic write method. type writer interface { write(p []byte) (n int, err error) }
任何实现了 read(write)
方法的类型,我们都称之为继承了 io.reader(io.writer)
接口。换句话说, 一个类型为 io.reader
的变量 可以指向(接口变量类似于指针)任何类型的变量,只要这个类型实现了read 方法:
var r io.reader r = os.stdin r = bufio.newreader(r) r = new(bytes.buffer) // and so on
要时刻牢记:不管变量 r 指向的具体值是什么,它的类型永远是 io.reader。再重复一次:go语言是静态类型语言,变量 r 的静态类型是 io.reader。
一个非常非常重要的接口类型是空接口,即:
interface{}
它代表一个空集,没有任何方法。由于任何具体的值都有 零或更多个方法,因此类型为interface{}
的变量能够存储任何值。
有人说,go的接口是动态类型的。这个说法是错的!接口变量也是静态类型的,它永远只有一个相同的静态类型。如果在运行时它存储的值发生了变化,这个值也必须满足接口类型的方法集合。
由于反射和接口两者的关系很密切,我们必须澄清这一点。
接口变量的表示
russ cox 在2009年写了一篇文章介绍 go中接口变量的表示形式,这里我们不需要重复所有的细节,只做一个简单的总结。
interface变量存储一对值:赋给该变量的具体的值、值类型的描述符。更准确一点来说,值就是实现该接口的底层数据,类型是底层数据类型的描述。举个例子:
var r io.reader tty, err := os.openfile("/dev/tty", os.o_rdwr, 0) if err != nil { return nil, err } r = tty
在这个例子中,变量 r 在结构上包含一个 (value, type) 对:(tty, os.file)。注意:类型 os.file 不仅仅实现了 read 方法。虽然接口变量只提供 read 函数的调用权,但是底层的值包含了关于这个值的所有类型信息。所以我们能够做这样的类型转换:
var w io.writer w = r.(io.writer)
上面代码的第二行是一个类型断言,它断定变量 r 内部的实际值也继承了 io.writer接口,所以才能被赋值给 w。赋值之后,w 就指向了 (tty, *os.file) 对,和变量 r 指向的是同一个 (value, type) 对。不管底层具体值的方法集有多大,由于接口的静态类型限制,接口变量只能调用特定的一些方法。
我们继续往下看:
var empty interface{} empty = w
这里的空接口变量 empty 也包含 (tty, *os.file) 对。这一点很容易理解:空接口变量可以存储任何具体值以及该值的所有描述信息。
细心的朋友可能会发现,这里没有使用类型断言,因为变量 w 满足 空接口的所有方法(传说中的“无招胜有招”)。在前一个例子中,我们把一个具体值 从 io.reader
转换为 io.writer
时,需要显式的类型断言,是因为 io.writer
的方法集合 不是 io.reader
的子集。
另外需要注意的一点是,(value, type) 对中的 type 必须是 具体的类型(struct或基本类型),不能是 接口类型。 接口类型不能存储接口变量。
关于接口,我们就介绍到这里,下面我们看看go语言的反射三定律。
反射第一定律:反射可以将“接口类型变量”转换为“反射类型对象”。
注:这里反射类型指 reflect.type
和 reflect.value
。
从用法上来讲,反射提供了一种机制,允许程序在运行时检查接口变量内部存储的 (value, type) 对。在最开始,我们先了解下 reflect 包的两种类型:type 和 value。这两种类型使访问接口内的数据成为可能。它们对应两个简单的方法,分别是 reflect.typeof
和 reflect.valueof
,分别用来读取接口变量的 reflect.type
和 reflect.value
部分。当然,从 reflect.value
也很容易获取到 reflect.type
。目前我们先将它们分开。
首先,我们下看 reflect.typeof:
package main import ( "fmt" "reflect" ) func main() { var x float64 = 3.4 fmt.println("type:", reflect.typeof(x)) }
这段代码会打印出:
type: float64
你可能会疑惑:为什么没看到接口?这段代码看起来只是把一个 float64类型的变量 x 传递给 reflect.typeof
,并没有传递接口。事实上,接口就在那里。查阅一下typeof 的文档,你会发现 reflect.typeof 的函数签名里包含一个空接口:
// typeof returns the reflection type of the value in the interface{}. func typeof(i interface{}) type
我们调用 reflect.typeof(x)
时,x 被存储在一个空接口变量中被传递过去; 然后reflect.typeof 对空接口变量进行拆解,恢复其类型信息。
函数 reflect.valueof
也会对底层的值进行恢复(这里我们忽略细节,只关注可执行的代码):
var x float64 = 3.4 fmt.println("value:", reflect.valueof(x))
上面这段代码打印出:
value: <float64 value>
类型 reflect.type
和 reflect.value
都有很多方法,我们可以检查和使用它们。这里我们举几个例子。类型 reflect.value
有一个方法 type(),它会返回一个 reflect.type
类型的对象。type和 value都有一个名为 kind 的方法,它会返回一个常量,表示底层数据的类型,常见值有:uint、float64、slice等。value类型也有一些类似于int、float的方法,用来提取底层的数据。int方法用来提取 int64, float方法用来提取 float64,参考下面的代码:
var x float64 = 3.4 v := reflect.valueof(x) fmt.println("type:", v.type()) fmt.println("kind is float64:", v.kind() == reflect.float64) fmt.println("value:", v.float())
上面这段代码会打印出:
type: float64 kind is float64: true value: 3.4
还有一些用来修改数据的方法,比如setint、setfloat,在讨论它们之前,我们要先理解“可修改性”(settability),这一特性会在“反射第三定律”中进行详细说明。
反射库提供了很多值得列出来单独讨论的属性。首先是介绍下value 的 getter 和 setter 方法。为了保证api 的精简,这两个方法操作的是某一组类型范围最大的那个。比如,处理任何含符号整型数,都使用 int64。也就是说 value 类型的int 方法返回值为 int64类型,setint 方法接收的参数类型也是 int64 类型。实际使用时,可能需要转化为实际的类型:
var x uint8 = 'x' v := reflect.valueof(x) fmt.println("type:", v.type()) // uint8. fmt.println("kind is uint8: ", v.kind() == reflect.uint8) // true. x = uint8(v.uint()) // v.uint returns a uint64.
第二个属性是反射类型变量(reflection object)的 kind 方法 会返回底层数据的类型,而不是静态类型。如果一个反射类型对象包含一个用户定义的整型数,看代码:
type myint int var x myint = 7 v := reflect.valueof(x)
上面的代码中,虽然变量 v 的静态类型是myint,不是 int,kind 方法仍然返回 reflect.int
。换句话说, kind 方法不会像 type 方法一样区分 myint 和 int。
反射第二定律:反射可以将“反射类型对象”转换为“接口类型变量”。
和物理学中的反射类似,go语言中的反射也能创造自己反面类型的对象。
根据一个 reflect.value 类型的变量,我们可以使用 interface 方法恢复其接口类型的值。事实上,这个方法会把 type 和 value 信息打包并填充到一个接口变量中,然后返回。其函数声明如下:
// interface returns v's value as an interface{}. func (v value) interface() interface{}
然后,我们可以通过断言,恢复底层的具体值:
y := v.interface().(float64) // y will have type float64. fmt.println(y)
上面这段代码会打印出一个 float64 类型的值,也就是 反射类型变量 v 所代表的值。
事实上,我们可以更好地利用这一特性。标准库中的 fmt.println
和 fmt.printf
等函数都接收空接口变量作为参数,fmt 包内部会对接口变量进行拆包(前面的例子中,我们也做过类似的操作)。因此,fmt 包的打印函数在打印 reflect.value 类型变量的数据时,只需要把 interface 方法的结果传给 格式化打印程序:
fmt.println(v.interface())
你可能会问:问什么不直接打印 v ,比如 fmt.println(v)? 答案是 v 的类型是 reflect.value,我们需要的是它存储的具体值。由于底层的值是一个 float64,我们可以格式化打印:
fmt.printf("value is %7.1e\n", v.interface())
上面代码的打印结果是:
3.4e+00
同样,这次也不需要对 v.interface()
的结果进行类型断言。空接口值内部包含了具体值的类型信息,printf 函数会恢复类型信息。
简单来说,interface
方法和 valueof
函数作用恰好相反,唯一一点是,返回值的静态类型是 interface{}。
我们重新表述一下:go的反射机制可以将“接口类型的变量”转换为“反射类型的对象”,然后再将“反射类型对象”转换过去。
反射第三定律:如果要修改“反射类型对象”,其值必须是“可写的”(settable)。
这条定律很微妙,也很容易让人迷惑。但是如果你从第一条定律开始看,应该比较容易理解。
下面这段代码不能正常工作,但是非常值得研究:
var x float64 = 3.4 v := reflect.valueof(x) v.setfloat(7.1) // error: will panic.
如果你运行这段代码,它会抛出抛出一个奇怪的异常:
panic: reflect.value.setfloat using unaddressable value
这里问题不在于值 7.1 不能被寻址,而是因为变量 v 是“不可写的”。“可写性”是反射类型变量的一个属性,但不是所有的反射类型变量都拥有这个属性。
我们可以通过 canset 方法检查一个 reflect.value 类型变量的“可写性”。对于上面的例子,可以这样写:
var x float64 = 3.4 v := reflect.valueof(x) fmt.println("settability of v:", v.canset())
上面这段代码打印结果是:
settability of v: false
对于一个不具有“可写性”的 value类型变量,调用 set 方法会报出错误。首先,我们要弄清楚什么“可写性”。
“可写性”有些类似于寻址能力,但是更严格。它是反射类型变量的一种属性,赋予该变量修改底层存储数据的能力。“可写性”最终是由一个事实决定的:反射对象是否存储了原始值。举个代码例子:
var x float64 = 3.4 v := reflect.valueof(x)
这里我们传递给 reflect.valueof
函数的是变量 x 的一个拷贝,而非 x 本身。想象一下,如果下面这行代码能够成功执行:
v.setfloat(7.1)
答案是:如果这行代码能够成功执行,它不会更新 x ,虽然看起来变量 v 是根据 x 创建的。相反,它会更新 x 存在于 反射对象 v 内部的一个拷贝,而变量 x 本身完全不受影响。这会造成迷惑,并且没有任何意义,所以是不合法的。“可写性”就是为了避免这个问题而设计的。
这看起来很诡异,事实上并非如此,而且类似的情况很常见。考虑下面这行代码:
f(x)
上面的代码中,我们把变量 x 的一个拷贝传递给函数,因此不期望它会改变 x 的值。如果期望函数 f 能够修改变量 x,我们必须传递 x 的地址(即指向 x 的指针)给函数 f,如下:
f(&x)
你应该很熟悉这行代码,反射的工作机制是一样的。如果你想通过反射修改变量 x,就咬吧想要修改的变量的指针传递给 反射库。
首先,像通常一样初始化变量 x,然后创建一个指向它的 反射对象,名字为 p:
var x float64 = 3.4 p := reflect.valueof(&x) // note: take the address of x. fmt.println("type of p:", p.type()) fmt.println("settability of p:", p.canset())
这段代码的输出是:
type of p: *float64 settability of p: false
反射对象 p 是不可写的,但是我们也不像修改 p,事实上我们要修改的是 *p。为了得到 p 指向的数据,可以调用 value 类型的 elem 方法。elem 方法能够对指针进行“解引用”,然后将结果存储到反射 value类型对象 v中:
v := p.elem() fmt.println("settability of v:", v.canset())
在上面这段代码中,变量 v 是一个可写的反射对象,代码输出也验证了这一点:
settability of v: true
由于变量 v 代表 x, 因此我们可以使用 v.setfloat 修改 x 的值:
v.setfloat(7.1) fmt.println(v.interface()) fmt.println(x)
上面代码的输出如下:
7.1 7.1
反射不太容易理解,reflect.type
和 reflect.value
会混淆正在执行的程序,但是它做的事情正是编程语言做的事情。你只需要记住:只要反射对象要修改它们表示的对象,就必须获取它们表示的对象的地址。
结构体(struct)
在前面的例子中,变量 v 本身并不是指针,它只是从指针衍生而来。把反射应用到结构体时,常用的方式是 使用反射修改一个结构体的某些字段。只要拥有结构体的地址,我们就可以修改它的字段。
下面通过一个简单的例子对结构体类型变量 t 进行分析。
首先,我们创建了反射类型对象,它包含一个结构体的指针,因为后续会修改。
然后,我们设置 typeoft 为它的类型,并遍历所有的字段。
注意:我们从 struct 类型提取出每个字段的名字,但是每个字段本身也是常规的 reflect.value 对象。
type t struct { a int b string } t := t{23, "skidoo"} s := reflect.valueof(&t).elem() typeoft := s.type() for i := 0; i < s.numfield(); i++ { f := s.field(i) fmt.printf("%d: %s %s = %v\n", i, typeoft.field(i).name, f.type(), f.interface()) }
上面这段代码的输出如下:
0: a int = 23 1: b string = skidoo
这里还有一点需要指出:变量 t 的字段都是首字母大写的(暴露到外部),因为struct中只有暴露到外部的字段才是“可写的”。
由于变量 s 包含一个“可写的”反射对象,我们可以修改结构体的字段:
f.interface())s.field(0).setint(77) s.field(1).setstring("sunset strip") fmt.println("t is now", t)
上面代码的输出如下:
t is now {77 sunset strip}
如果变量 s 是通过 t ,而不是 &t 创建的,调用 setint 和 setstring 将会失败,因为 t 的字段不是“可写的”。
结论
最后再次重复一遍反射三定律:
1.反射可以将“接口类型变量”转换为“反射类型对象”。
2.反射可以将“反射类型对象”转换为“接口类型变量”。
3.如果要修改“反射类型对象”,其值必须是“可写的”(settable)。
一旦你理解了这些定律,使用反射将会是一件非常简单的事情。它是一件强大的工具,使用时务必谨慎使用,更不要滥用。
关于反射,我们还有很多内容没有讨论,包括基于管道的发送和接收、内存分配、使用slice和map、调用方法和函数,这些话题我们会在后续的文章中介绍。请大家继续关注。
原作者 rob pike,翻译oscar
上一篇: golang两种调用rpc的方法
下一篇: Go语言实现类似c++中的多态功能实例