欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python3 对拉勾数据进行可视化分析

程序员文章站 2022-07-04 23:22:27
上回说到我们如何如何把拉勾的数据抓取下来的,既然获取了数据,就别放着不动,把它拿出来分析一下,看看这些数据里面都包含了什么信息。(本次博客源码地址:https://github.com/MaxLyu/Lagou_Analyze) 一、前期准备 由于上次抓的数据里面包含有 ID 这样的信息,我们需要将 ......

  上回说到我们如何如何把拉勾的数据抓取下来的,既然获取了数据,就别放着不动,把它拿出来分析一下,看看这些数据里面都包含了什么信息。(本次博客源码地址:https://github.com/maxlyu/lagou_analyze

一、前期准备

  由于上次抓的数据里面包含有 id 这样的信息,我们需要将它去掉,并且查看描述性统计,确认是否存在异常值或者确实值。

read_file = "analyst.csv"
# 读取文件获得数据
data = pd.read_csv(read_file, encoding="gbk")
# 去除数据中无关的列
data = data[:].drop(['id'], axis=1)
# 描述性统计
data.describe()

                       python3 对拉勾数据进行可视化分析

  结果中的 unique 表示的是在该属性列下面存在的不同值个数,以学历要求为例子,它包含【本科、大专、硕士、不限】这4个不同的值,top 则表示数量最多的值为【本科】,freq 表示出现的频率为 387。由于薪资的 unique 比较多,我们查看一下存在什么值。

print(data['学历要求'].unique())
print(data['工作经验'].unique())
print(data['薪资'].unique())

                 python3 对拉勾数据进行可视化分析

二、预处理

  从上述两张图可以看到,学历要求和工作经验的值比较少且没有缺失值与异常值,可以直接进行分析;但薪资的分布比较多,总计有75种,为了更好地进行分析,我们要对薪资做一个预处理。根据其分布情况,可以将它分成【5k 以下、5k-10k、10k-20k、20k-30k、30k-40k、40k 以上】,为了更加方便我们分析,取每个薪资范围的中位数,并划分到我们指定的范围内。

# 对薪资进行预处理
def pre_salary(data):
    salarys = data['薪资'].values
    salary_dic = {}
    for salary in salarys:
        # 根据'-'进行分割并去掉'k',分别将两端的值转换成整数
        min_sa = int(salary.split('-')[0][:-1])
        max_sa = int(salary.split('-')[1][:-1])
        # 求中位数
        median_sa = (min_sa + max_sa) / 2
        # 判断其值并划分到指定范围
        if median_sa < 5:
            salary_dic[u'5k以下'] = salary_dic.get(u'5k以下', 0) + 1
        elif median_sa > 5 and median_sa < 10:
            salary_dic[u'5k-10k'] = salary_dic.get(u'5k-10k', 0) + 1
        elif median_sa > 10 and median_sa < 20:
            salary_dic[u'10k-20k'] = salary_dic.get(u'10k-20k', 0) + 1
        elif median_sa > 20 and median_sa < 30:
            salary_dic[u'20k-30k'] = salary_dic.get(u'20k-30k', 0) + 1
        elif median_sa > 30 and median_sa < 40:
            salary_dic[u'30k-40k'] = salary_dic.get(u'30k-40k', 0) + 1
        else:
            salary_dic[u'40以上'] = salary_dic.get(u'40以上', 0) + 1
    print(salary_dic)
    return salary_dic

  对【薪资】进行预处理之后,还要对【任职要求】的文本进行预处理。因为要做成词云图,需要对文本进行分割并去除掉一些出现频率较多但没有意义的词,我们称之为停用词,所以我们用 jieba 库进行处理。jieba 是一个python实现的分词库,对中文有着很强大的分词能力。

import jieba
def cut_text(text):
    stopwords =['熟悉','技术','职位','相关','工作','开发','使用','能力',
                '优先','描述','任职','经验','经验者','具有','具备','以上','善于',
                '一种','以及','一定','进行','能够','我们']
    for stopword in stopwords:
        jieba.del_word(stopword)
    
    words = jieba.lcut(text)
    content = " ".join(words)
    return content

  预处理完成之后,就可以进行可视化分析了。

三、可视化分析

  我们先绘制环状图和柱状图,然后将数据传进去就行了,环状图的代码如下:

def draw_pie(dic):
    labels = []
    count = []
    
    for key, value in dic.items():
        labels.append(key)
        count.append(value)
        
    fig, ax = plt.subplots(figsize=(8, 6), subplot_kw=dict(aspect="equal"))

    # 绘制饼状图,wedgeprops 表示每个扇形的宽度
    wedges, texts = ax.pie(count, wedgeprops=dict(width=0.5), startangle=0)
    # 文本框设置
    bbox_props = dict(boxstyle="square,pad=0.9", fc="w", ec="k", lw=0)
    # 线与箭头设置
    kw = dict(xycoords='data', textcoords='data', arrowprops=dict(arrowstyle="-"),
              bbox=bbox_props, zorder=0, va="center")

    for i, p in enumerate(wedges):
        ang = (p.theta2 - p.theta1)/2. + p.theta1
        y = np.sin(np.deg2rad(ang))
        x = np.cos(np.deg2rad(ang))
        # 设置文本框在扇形的哪一侧
        horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))]
        # 用于设置箭头的弯曲程度
        connectionstyle = "angle,anglea=0,angleb={}".format(ang)
        kw["arrowprops"].update({"connectionstyle": connectionstyle})
        # annotate()用于对已绘制的图形做标注,text是注释文本,含 'xy' 的参数跟坐标点有关
        text = labels[i] + ": " + str('%.2f' %((count[i])/sum(count)*100)) + "%"
        ax.annotate(text, size=13, xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y),
                     horizontalalignment=horizontalalignment, **kw)
    plt.show()

  柱状图的代码如下:

def draw_workyear(data):
    workyears = list(data[u'工作经验'].values)
    wy_dic = {}
    labels = []
    count = []
    # 得到工作经验对应的数目并保存到count中
    for workyear in workyears:
        wy_dic[workyear] = wy_dic.get(workyear, 0) + 1
    print(wy_dic)
    # wy_series = pd.series(wy_dic)
    # 分别得到 count 的 key 和 value
    for key, value in wy_dic.items():
        labels.append(key)
        count.append(value)
    # 生成 keys 个数的数组
    x = np.arange(len(labels)) + 1
    # 将 values 转换成数组
    y = np.array(count)
    
    fig, axes = plt.subplots(figsize=(10, 8))
    axes.bar(x, y, color="#1195d0")
    plt.xticks(x, labels, size=13, rotation=0)
    plt.xlabel(u'工作经验', fontsize=15)
    plt.ylabel(u'数量', fontsize=15)
    
    # 根据坐标将数字标在图中,ha、va 为对齐方式
    for a, b in zip(x, y):
        plt.text(a, b+1, '%.0f' % b, ha='center', va='bottom', fontsize=12)
    plt.show()

  我们再把学历要求和薪资的数据稍微处理一下变成字典形式,传进绘制好的环状图函数就行了。另外,我们还要对【任职要求】的文本进行可视化。

from wordcloud import wordcloud
# 绘制词云图
def draw_wordcloud(content):
    
    wc = wordcloud(
        font_path = 'c:\\windows\fonts\msyh.ttf',
        background_color = 'white',
        max_font_size=150,  # 字体最大值
        min_font_size=24,  # 字体最小值
        random_state=800, # 随机数
        collocations=false, # 避免重复单词
        width=1600,height=1200,margin=35, # 图像宽高,字间距
    )
    wc.generate(content)

    plt.figure(dpi=160) # 放大或缩小
    plt.imshow(wc, interpolation='catrom',vmax=1000)
    plt.axis("off") # 隐藏坐标

四、成果与总结

        python3 对拉勾数据进行可视化分析

  python数据分析师的学历大部分要求是本科,占了86%。

        python3 对拉勾数据进行可视化分析

  从柱状图可以看出,python数据分析师的工作经验绝大部分要求1-5年。

        python3 对拉勾数据进行可视化分析

  由此可以得出python数据分析的工资为10k-20k的比较多,40以上的也不少,工资高估计要求会比较高,所以我们看一下职位要求。

      python3 对拉勾数据进行可视化分析

  从词云图可看出,数据分析肯定要对数据比较敏感,并且对统计学、excel、python、数据挖掘、hadoop等也有一定的要求。不仅如此,还要求具有一定的抗压能力、解决问题的能力、良好的表达能力、思维能力等。