分别采用线性LDA、k-means和SVM算法对鸢尾花数据集和月亮数据集进行二分类可视化分析
目录
一、线性LDA、k-means和SVM算法介绍
(一)线性LDA算法
线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。使用这种方法能够使投影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最小。就是说,它能够保证投影后模式样本在新的空间中有最小的类内距离和最大的类间距离,即模式在该空间中有最佳的可分离性。
(二)k-means算法
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。
(三)SVM(支持向量机)算法
支持向量机(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。
二、采用线性LDA算法
(一)鸢尾花数据集
Python代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_classification
class LDA():
def Train(self, X, y):
"""X为训练数据集,y为训练label"""
X1 = np.array([X[i] for i in range(len(X)) if y[i] == 0])
X2 = np.array([X[i] for i in range(len(X)) if y[i] == 1])
# 求中心点
mju1 = np.mean(X1, axis=0) # mju1是ndrray类型
mju2 = np.mean(X2, axis=0)
# dot(a, b, out=None) 计算矩阵乘法
cov1 = np.dot((X1 - mju1).T, (X1 - mju1))
cov2 = np.dot((X2 - mju2).T, (X2 - mju2))
Sw = cov1 + cov2
# 计算w
w = np.dot(np.mat(Sw).I, (mju1 - mju2).reshape((len(mju1), 1)))
# 记录训练结果
self.mju1 = mju1 # 第1类的分类中心
self.cov1 = cov1
self.mju2 = mju2 # 第2类的分类中心
self.cov2 = cov2
self.Sw = Sw # 类内散度矩阵
self.w = w # 判别权重矩阵
def Test(self, X, y):
"""X为测试数据集,y为测试label"""
# 分类结果
y_new = np.dot((X), self.w)
# 计算fisher线性判别式
nums = len(y)
c1 = np.dot((self.mju1 - self.mju2).reshape(1, (len(self.mju1))), np.mat(self.Sw).I)
c2 = np.dot(c1, (self.mju1 + self.mju2).reshape((len(self.mju1), 1)))
c = 1/2 * c2 # 2个分类的中心
h = y_new - c
# 判别
y_hat = []
for i in range(nums):
if h[i] >= 0:
y_hat.append(0)
else:
y_hat.append(1)
# 计算分类精度
count = 0
for i in range(nums):
if y_hat[i] == y[i]:
count += 1
precise = count / nums
# 显示信息
print("测试样本数量:", nums)
print("预测正确样本的数量:", count)
print("测试准确度:", precise)
return precise
if '__main__' == __name__:
# 产生分类数据
n_samples = 500
X, y = make_classification(n_samples=n_samples, n_features=2, n_redundant=0, n_classes=2,n_informative=1, n_clusters_per_class=1, class_sep=0.5, random_state=10)
# LDA线性判别分析(二分类)
lda = LDA()
# 60% 用作训练,40%用作测试
Xtrain = X[:299, :]
Ytrain = y[:299]
Xtest = X[300:, :]
Ytest = y[300:]
lda.Train(Xtrain, Ytrain)
precise = lda.Test(Xtest, Ytest)
# 原始数据
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.xlabel("x1")
plt.ylabel("x2")
plt.title("Test precise:" + str(precise))
plt.show()
运行结果
(二)月亮数据集
Python代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
class LDA():
def Train(self, X, y):
"""X为训练数据集,y为训练label"""
X1 = np.array([X[i] for i in range(len(X)) if y[i] == 0])
X2 = np.array([X[i] for i in range(len(X)) if y[i] == 1])
# 求中心点
mju1 = np.mean(X1, axis=0) # mju1是ndrray类型
mju2 = np.mean(X2, axis=0)
# dot(a, b, out=None) 计算矩阵乘法
cov1 = np.dot((X1 - mju1).T, (X1 - mju1))
cov2 = np.dot((X2 - mju2).T, (X2 - mju2))
Sw = cov1 + cov2
# 计算w
w = np.dot(np.mat(Sw).I, (mju1 - mju2).reshape((len(mju1), 1)))
# 记录训练结果
self.mju1 = mju1 # 第1类的分类中心
self.cov1 = cov1
self.mju2 = mju2 # 第1类的分类中心
self.cov2 = cov2
self.Sw = Sw # 类内散度矩阵
self.w = w # 判别权重矩阵
def Test(self, X, y):
"""X为测试数据集,y为测试label"""
# 分类结果
y_new = np.dot((X), self.w)
# 计算fisher线性判别式
nums = len(y)
c1 = np.dot((self.mju1 - self.mju2).reshape(1, (len(self.mju1))), np.mat(self.Sw).I)
c2 = np.dot(c1, (self.mju1 + self.mju2).reshape((len(self.mju1), 1)))
c = 1/2 * c2 # 2个分类的中心
h = y_new - c
# 判别
y_hat = []
for i in range(nums):
if h[i] >= 0:
y_hat.append(0)
else:
y_hat.append(1)
# 计算分类精度
count = 0
for i in range(nums):
if y_hat[i] == y[i]:
count += 1
precise = count / (nums+0.000001)
# 显示信息
print("测试样本数量:", nums)
print("预测正确样本的数量:", count)
print("测试准确度:", precise)
return precise
if '__main__' == __name__:
# 产生分类数据
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
# LDA线性判别分析(二分类)
lda = LDA()
# 60% 用作训练,40%用作测试
Xtrain = X[:60, :]
Ytrain = y[:60]
Xtest = X[40:, :]
Ytest = y[40:]
lda.Train(Xtrain, Ytrain)
precise = lda.Test(Xtest, Ytest)
# 原始数据
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.xlabel("x1")
plt.ylabel("x2")
plt.title("Test precise:" + str(precise))
plt.show()
运行结果
三、采用k-means算法
(一)鸢尾花数据集
Python代码
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn import datasets
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data[:] ##表示我们只取特征空间中的后两个维度
estimator = KMeans(n_clusters=5)#构造聚类器
estimator.fit(X)#聚类
label_pred = estimator.labels_ #获取聚类标签
#绘制k-means结果
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
x3 = X[label_pred == 3]
plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1')
#plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2')
#plt.scatter(x3[:, 0], x3[:, 1], c = "yellow", marker='o', label='label3')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show()
运行结果
(二)月亮数据集
Python代码
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
estimator = KMeans(n_clusters=5)#构造聚类器
estimator.fit(X)#聚类
label_pred = estimator.labels_ #获取聚类标签
#绘制k-means结果
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
x3 = X[label_pred == 3]
plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1')
#plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2')
#plt.scatter(x3[:, 0], x3[:, 1], c = "yellow", marker='o', label='label3')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show()
四、采用SVM(支持向量机)算法
(一)鸢尾花数据集
Python代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, svm
import pandas as pd
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
iris = datasets.load_iris()
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y != 0, :2] # 选择X的前两个特性
y = y[y != 0]
n_sample = len(X)
np.random.seed(0)
order = np.random.permutation(n_sample) # 排列,置换
X = X[order]
y = y[order].astype(np.float)
X_train = X[:int(.9 * n_sample)]
y_train = y[:int(.9 * n_sample)]
X_test = X[int(.9 * n_sample):]
y_test = y[int(.9 * n_sample):]
#合适的模型
for fig_num, kernel in enumerate(('linear', 'rbf','poly')): # 径向基函数 (Radial Basis Function 简称 RBF),常用的是高斯基函数
clf = svm.SVC(kernel=kernel, gamma=10) # gamma是“rbf”、“poly”和“sigmoid”的核系数。
clf.fit(X_train, y_train)
plt.figure(str(kernel))
plt.xlabel('x1')
plt.ylabel('x2')
plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired, edgecolor='k', s=20)
# zorder: z方向上排列顺序,数值越大,在上方显示
# paired两个色彩相近输出(paired)
# 圈出测试数据
plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none',zorder=10, edgecolor='k')
plt.axis('tight') #更改 x 和 y 轴限制,以便显示所有数据
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # 样本X到分离超平面的距离
Z = Z.reshape(XX.shape)
plt.contourf(XX,YY,Z>0,cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['r', 'k', 'b'],
linestyles=['--', '-', '--'], levels=[-0.5, 0, 0.5]) # 范围
plt.title(kernel)
plt.show()
运行结果
(二)月亮数据集
Python代码
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
import numpy as np
import matplotlib as mpl
from sklearn.datasets import make_moons
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
# 为了显示中文
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
def plot_dataset(X, y, axes):
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
plt.axis(axes)
plt.grid(True, which='both')
plt.xlabel(r"$x_1$", fontsize=20)
plt.ylabel(r"$x_2$", fontsize=20, rotation=0)
plt.title("月亮数据",fontsize=20)
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.show()
运行结果
五、总结
SVM算法优点:
1、使用核函数可以向高维空间进行映射
2、使用核函数可以解决非线性的分类
3、分类思想很简单,就是将样本与决策面的间隔最大化
4、分类效果较好
SVM算法缺点:
1、对大规模数据训练比较困难
2、无法直接支持多分类,但是可以使用间接的方法来做