欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

深度学习课后作业——Course2-Week2

程序员文章站 2022-07-04 21:02:02
...

此篇摘自*这个巨巨*,本文只是加上了自己的总结


  • python里的列表分片

列表可以通过索引值来获取列表中的一个元素,但当需要一次性获取多个元素的时候, 就要使用列表的分片(slice)来实现

a[indexL,indexR]:=获取索引为[indexL,indexR)位置上的索引

深度学习课后作业——Course2-Week2

深度学习课后作业——Course2-Week2 

  • np.random.permutation生成随机序列

深度学习课后作业——Course2-Week2

  • np.zeros_like(a)

这个函数的意思就是生成一个和你所给数组a,维度相同的全0数组。

深度学习课后作业——Course2-Week2


代码整合:

import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import math
import sklearn
import sklearn.datasets

import opt_utils #参见数据包或者在本文底部copy
import testCase  #参见数据包或者在本文底部copy

plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'


#gradient descent
def update_parameters_with_gd(parameters,grads,learning_rate):
    """
    使用梯度下降更新参数
    
    参数:
        parameters - 字典,包含了要更新的参数:
            parameters['W' + str(l)] = Wl
            parameters['b' + str(l)] = bl
        grads - 字典,包含了每一个梯度值用以更新参数
            grads['dW' + str(l)] = dWl
            grads['db' + str(l)] = dbl
        learning_rate - 学习率
        
    返回值:
        parameters - 字典,包含了更新后的参数
    """
    
    L = len(parameters) // 2 #神经网络的层数
    
    #更新每个参数
    for l in range(L):
        parameters["W" + str(l +1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l +1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
    
    return parameters

def random_mini_batches(X,Y,mini_batch_size=64,seed=0):
    """
    从(X,Y)中创建一个随机的mini-batch列表
    
    参数:
        X - 输入数据,维度为(输入节点数量,样本的数量)
        Y - 对应的是X的标签,【1 | 0】(蓝|红),维度为(1,样本的数量)
        mini_batch_size - 每个mini-batch的样本数量
        
    返回:
        mini-bacthes - 一个同步列表,维度为(mini_batch_X,mini_batch_Y)
        
    """
    
    np.random.seed(seed) #指定随机种子
    m = X.shape[1]
    mini_batches = []
    
    #第一步:打乱顺序
    permutation = list(np.random.permutation(m)) #它会返回一个长度为m的随机数组,且里面的数是0到m-1
    shuffled_X = X[:,permutation]   #将每一列的数据按permutation的顺序来重新排列。
    shuffled_Y = Y[:,permutation].reshape((1,m))
    
    """
    #博主注:
    #如果你不好理解的话请看一下下面的伪代码,看看X和Y是如何根据permutation来打乱顺序的。
    x = np.array([[1,2,3,4,5,6,7,8,9],
				  [9,8,7,6,5,4,3,2,1]])
    y = np.array([[1,0,1,0,1,0,1,0,1]])
    
    random_mini_batches(x,y)
    permutation= [7, 2, 1, 4, 8, 6, 3, 0, 5]
    shuffled_X= [[8 3 2 5 9 7 4 1 6]
                 [2 7 8 5 1 3 6 9 4]]
    shuffled_Y= [[0 1 0 1 1 1 0 1 0]]
    """
    
    #第二步,分割
    num_complete_minibatches = math.floor(m / mini_batch_size) #把你的训练集分割成多少份,请注意,如果值是99.99,那么返回值是99,剩下的0.99会被舍弃
    for k in range(0,num_complete_minibatches):
        mini_batch_X = shuffled_X[:,k * mini_batch_size:(k+1)*mini_batch_size]
        mini_batch_Y = shuffled_Y[:,k * mini_batch_size:(k+1)*mini_batch_size]
        """
        #博主注:
        #如果你不好理解的话请单独执行下面的代码,它可以帮你理解一些。
        a = np.array([[1,2,3,4,5,6,7,8,9],
                      [9,8,7,6,5,4,3,2,1],
                      [1,2,3,4,5,6,7,8,9]])
        k=1
        mini_batch_size=3
        print(a[:,1*3:(1+1)*3]) #从第4列到第6列
        '''
        [[4 5 6]
         [6 5 4]
         [4 5 6]]
        '''
        k=2
        print(a[:,2*3:(2+1)*3]) #从第7列到第9列
        '''
        [[7 8 9]
         [3 2 1]
         [7 8 9]]
        '''

        #看一下每一列的数据你可能就会好理解一些
        """
        mini_batch = (mini_batch_X,mini_batch_Y)
        mini_batches.append(mini_batch)
    
    #如果训练集的大小刚好是mini_batch_size的整数倍,那么这里已经处理完了
    #如果训练集的大小不是mini_batch_size的整数倍,那么最后肯定会剩下一些,我们要把它处理了
    if m % mini_batch_size != 0:
        #获取最后剩余的部分
        mini_batch_X = shuffled_X[:,mini_batch_size * num_complete_minibatches:]
        mini_batch_Y = shuffled_Y[:,mini_batch_size * num_complete_minibatches:]
        
        mini_batch = (mini_batch_X,mini_batch_Y)
        mini_batches.append(mini_batch)
        
    return mini_batches

#momentum
def initialize_velocity(parameters):
    """
    初始化速度,velocity是一个字典:
        - keys: "dW1", "db1", ..., "dWL", "dbL" 
        - values:与相应的梯度/参数维度相同的值为零的矩阵。
    参数:
        parameters - 一个字典,包含了以下参数:
            parameters["W" + str(l)] = Wl
            parameters["b" + str(l)] = bl
    返回:
        v - 一个字典变量,包含了以下参数:
            v["dW" + str(l)] = dWl的速度
            v["db" + str(l)] = dbl的速度
    
    """
    L = len(parameters) // 2 #神经网络的层数
    v = {}
    
    for l in range(L):
        v["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l + 1)])
        v["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l + 1)])
    
    return v

def update_parameters_with_momentun(parameters,grads,v,beta,learning_rate):
    """
    使用动量更新参数
    参数:
        parameters - 一个字典类型的变量,包含了以下字段:
            parameters["W" + str(l)] = Wl
            parameters["b" + str(l)] = bl
        grads - 一个包含梯度值的字典变量,具有以下字段:
            grads["dW" + str(l)] = dWl
            grads["db" + str(l)] = dbl
        v - 包含当前速度的字典变量,具有以下字段:
            v["dW" + str(l)] = ...
            v["db" + str(l)] = ...
        beta - 超参数,动量,实数
        learning_rate - 学习率,实数
    返回:
        parameters - 更新后的参数字典
        v - 包含了更新后的速度变量
    """
    L = len(parameters) // 2 
    for l in range(L):
        #计算速度
        v["dW" + str(l + 1)] = beta * v["dW" + str(l + 1)] + (1 - beta) * grads["dW" + str(l + 1)]
        v["db" + str(l + 1)] = beta * v["db" + str(l + 1)] + (1 - beta) * grads["db" + str(l + 1)]
        
        #更新参数
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * v["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * v["db" + str(l + 1)]
    
    return parameters,v

#adam
def initialize_adam(parameters):
    """
    初始化v和s,它们都是字典类型的变量,都包含了以下字段:
        - keys: "dW1", "db1", ..., "dWL", "dbL" 
        - values:与对应的梯度/参数相同维度的值为零的numpy矩阵
    
    参数:
        parameters - 包含了以下参数的字典变量:
            parameters["W" + str(l)] = Wl
            parameters["b" + str(l)] = bl
    返回:
        v - 包含梯度的指数加权平均值,字段如下:
            v["dW" + str(l)] = ...
            v["db" + str(l)] = ...
        s - 包含平方梯度的指数加权平均值,字段如下:
            s["dW" + str(l)] = ...
            s["db" + str(l)] = ...
    
    """
    
    L = len(parameters) // 2
    v = {}
    s = {}
    
    for l in range(L):
        v["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l + 1)])
        v["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l + 1)])
        
        s["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l + 1)])
        s["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l + 1)])
    
    return (v,s)

def update_parameters_with_adam(parameters,grads,v,s,t,learning_rate=0.01,beta1=0.9,beta2=0.999,epsilon=1e-8):
    """
    使用Adam更新参数
    
    参数:
        parameters - 包含了以下字段的字典:
            parameters['W' + str(l)] = Wl
            parameters['b' + str(l)] = bl
        grads - 包含了梯度值的字典,有以下key值:
            grads['dW' + str(l)] = dWl
            grads['db' + str(l)] = dbl
        v - Adam的变量,第一个梯度的移动平均值,是一个字典类型的变量
        s - Adam的变量,平方梯度的移动平均值,是一个字典类型的变量
        t - 当前迭代的次数
        learning_rate - 学习率
        beta1 - 动量,超参数,用于第一阶段,使得曲线的Y值不从0开始(参见天气数据的那个图)
        beta2 - RMSprop的一个参数,超参数
        epsilon - 防止除零操作(分母为0)
    
    返回:
        parameters - 更新后的参数
        v - 第一个梯度的移动平均值,是一个字典类型的变量
        s - 平方梯度的移动平均值,是一个字典类型的变量
    """
    L = len(parameters) // 2
    v_corrected = {} #偏差修正后的值
    s_corrected = {} #偏差修正后的值
    
    for l in range(L):
        #梯度的移动平均值,输入:"v , grads , beta1",输出:" v "
        v["dW" + str(l + 1)] = beta1 * v["dW" + str(l + 1)] + (1 - beta1) * grads["dW" + str(l + 1)]
        v["db" + str(l + 1)] = beta1 * v["db" + str(l + 1)] + (1 - beta1) * grads["db" + str(l + 1)]
        
        #计算第一阶段的偏差修正后的估计值,输入"v , beta1 , t" , 输出:"v_corrected"
        v_corrected["dW" + str(l + 1)] = v["dW" + str(l + 1)] / (1 - np.power(beta1,t))
        v_corrected["db" + str(l + 1)] = v["db" + str(l + 1)] / (1 - np.power(beta1,t))
    
        #计算平方梯度的移动平均值,输入:"s, grads , beta2",输出:"s"
        s["dW" + str(l + 1)] = beta2 * s["dW" + str(l + 1)] + (1 - beta2) * np.square(grads["dW" + str(l + 1)])
        s["db" + str(l + 1)] = beta2 * s["db" + str(l + 1)] + (1 - beta2) * np.square(grads["db" + str(l + 1)])
         
        #计算第二阶段的偏差修正后的估计值,输入:"s , beta2 , t",输出:"s_corrected"
        s_corrected["dW" + str(l + 1)] = s["dW" + str(l + 1)] / (1 - np.power(beta2,t))
        s_corrected["db" + str(l + 1)] = s["db" + str(l + 1)] / (1 - np.power(beta2,t))
        
        #更新参数,输入: "parameters, learning_rate, v_corrected, s_corrected, epsilon". 输出: "parameters".
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * (v_corrected["dW" + str(l + 1)] / np.sqrt(s_corrected["dW" + str(l + 1)] + epsilon))
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * (v_corrected["db" + str(l + 1)] / np.sqrt(s_corrected["db" + str(l + 1)] + epsilon))
    
    return (parameters,v,s)

def model(X,Y,layers_dims,optimizer,learning_rate=0.0007,
          mini_batch_size=64,beta=0.9,beta1=0.9,beta2=0.999,
          epsilon=1e-8,num_epochs=10000,print_cost=True,is_plot=True):
    
    """
    可以运行在不同优化器模式下的3层神经网络模型。
    
    参数:
        X - 输入数据,维度为(2,输入的数据集里面样本数量)
        Y - 与X对应的标签
        layers_dims - 包含层数和节点数量的列表
        optimizer - 字符串类型的参数,用于选择优化类型,【 "gd" | "momentum" | "adam" 】
        learning_rate - 学习率
        mini_batch_size - 每个小批量数据集的大小
        beta - 用于动量优化的一个超参数
        beta1 - 用于计算梯度后的指数衰减的估计的超参数
        beta1 - 用于计算平方梯度后的指数衰减的估计的超参数
        epsilon - 用于在Adam中避免除零操作的超参数,一般不更改
        num_epochs - 整个训练集的遍历次数,(视频2.9学习率衰减,1分55秒处,视频中称作“代”),相当于之前的num_iteration
        print_cost - 是否打印误差值,每遍历1000次数据集打印一次,但是每100次记录一个误差值,又称每1000代打印一次
        is_plot - 是否绘制出曲线图
        
    返回:
        parameters - 包含了学习后的参数
        
    """
    L = len(layers_dims)
    costs = []
    t = 0 #每学习完一个minibatch就增加1
    seed = 10 #随机种子
    
    #初始化参数
    parameters = opt_utils.initialize_parameters(layers_dims)
    
    #选择优化器
    if optimizer == "gd":
        pass #不使用任何优化器,直接使用梯度下降法
    elif optimizer == "momentum":
        v = initialize_velocity(parameters) #使用动量
    elif optimizer == "adam":
        v, s = initialize_adam(parameters)#使用Adam优化
    else:
        print("optimizer参数错误,程序退出。")
        exit(1)
    
    #开始学习
    for i in range(num_epochs):
        #定义随机 minibatches,我们在每次遍历数据集之后增加种子以重新排列数据集,使每次数据的顺序都不同
        seed = seed + 1
        minibatches = random_mini_batches(X,Y,mini_batch_size,seed)
        
        for minibatch in minibatches:
            #选择一个minibatch
            (minibatch_X,minibatch_Y) = minibatch
            
            #前向传播
            A3 , cache = opt_utils.forward_propagation(minibatch_X,parameters)
            
            #计算误差
            cost = opt_utils.compute_cost(A3 , minibatch_Y)
            
            #反向传播
            grads = opt_utils.backward_propagation(minibatch_X,minibatch_Y,cache)
            
            #更新参数
            if optimizer == "gd":
                parameters = update_parameters_with_gd(parameters,grads,learning_rate)
            elif optimizer == "momentum":
                parameters, v = update_parameters_with_momentun(parameters,grads,v,beta,learning_rate)
            elif optimizer == "adam":
                t = t + 1 
                parameters , v , s = update_parameters_with_adam(parameters,grads,v,s,t,learning_rate,beta1,beta2,epsilon)
        #记录误差值
        if i % 100 == 0:
            costs.append(cost)
            #是否打印误差值
            if print_cost and i % 1000 == 0:
                print("第" + str(i) + "次遍历整个数据集,当前误差值:" + str(cost))
    #是否绘制曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('epochs (per 100)')
        plt.title("Learning rate = " + str(learning_rate))
        plt.show()
    
    return parameters

train_X, train_Y = opt_utils.load_dataset(is_plot=False)

#使用普通的梯度下降
print("=====普通梯度下降======")
layers_dims = [train_X.shape[0],5,2,1]
parameters = model(train_X, train_Y, layers_dims, optimizer="gd",is_plot=True)
#预测
preditions = opt_utils.predict(train_X,train_Y,parameters)

#绘制分类图
plt.title("Model with Gradient Descent optimization")
axes = plt.gca()
axes.set_xlim([-1.5, 2.5])
axes.set_ylim([-1, 1.5])
opt_utils.plot_decision_boundary(lambda x: opt_utils.predict_dec(parameters, x.T), train_X, train_Y)


layers_dims = [train_X.shape[0],5,2,1]
#使用动量的梯度下降
print("=====动量梯度下降=====")
parameters = model(train_X, train_Y, layers_dims, beta=0.9,optimizer="momentum",is_plot=True)
#预测
preditions = opt_utils.predict(train_X,train_Y,parameters)

#绘制分类图
plt.title("Model with Momentum optimization")
axes = plt.gca()
axes.set_xlim([-1.5, 2.5])
axes.set_ylim([-1, 1.5])
opt_utils.plot_decision_boundary(lambda x: opt_utils.predict_dec(parameters, x.T), train_X, train_Y)


layers_dims = [train_X.shape[0], 5, 2, 1]
#使用Adam优化的梯度下降
print("=====Adam优化梯度下降=====")
parameters = model(train_X, train_Y, layers_dims, optimizer="adam",is_plot=True)

#预测
preditions = opt_utils.predict(train_X,train_Y,parameters)

#绘制分类图
plt.title("Model with Adam optimization")
axes = plt.gca()
axes.set_xlim([-1.5, 2.5])
axes.set_ylim([-1, 1.5])
opt_utils.plot_decision_boundary(lambda x: opt_utils.predict_dec(parameters, x.T), train_X, train_Y)

运行结果:

=====普通梯度下降======
第0次遍历整个数据集,当前误差值:0.690735512291113
第1000次遍历整个数据集,当前误差值:0.6852725328458241
第2000次遍历整个数据集,当前误差值:0.6470722240719003
第3000次遍历整个数据集,当前误差值:0.6195245549970403
第4000次遍历整个数据集,当前误差值:0.5765844355950944
第5000次遍历整个数据集,当前误差值:0.6072426395968576
第6000次遍历整个数据集,当前误差值:0.5294033317684576
第7000次遍历整个数据集,当前误差值:0.46076823985930115
第8000次遍历整个数据集,当前误差值:0.465586082399045
第9000次遍历整个数据集,当前误差值:0.46451797221676844

深度学习课后作业——Course2-Week2

Accuracy: 0.7966666666666666

深度学习课后作业——Course2-Week2

=====动量梯度下降=====
第0次遍历整个数据集,当前误差值:0.6907412988351506
第1000次遍历整个数据集,当前误差值:0.6853405261267578
第2000次遍历整个数据集,当前误差值:0.6471448370095255
第3000次遍历整个数据集,当前误差值:0.6195943032076022
第4000次遍历整个数据集,当前误差值:0.5766650344073023
第5000次遍历整个数据集,当前误差值:0.607323821900647
第6000次遍历整个数据集,当前误差值:0.5294761758786996
第7000次遍历整个数据集,当前误差值:0.46093619004872366
第8000次遍历整个数据集,当前误差值:0.465780093701272
第9000次遍历整个数据集,当前误差值:0.4647395967922748

深度学习课后作业——Course2-Week2

Accuracy: 0.7966666666666666

深度学习课后作业——Course2-Week2

=====Adam优化梯度下降=====
第0次遍历整个数据集,当前误差值:0.6905522446113365
第1000次遍历整个数据集,当前误差值:0.18550136438550574
第2000次遍历整个数据集,当前误差值:0.150830465752532
第3000次遍历整个数据集,当前误差值:0.07445438570997183
第4000次遍历整个数据集,当前误差值:0.12595915651337164
第5000次遍历整个数据集,当前误差值:0.10434443534245487
第6000次遍历整个数据集,当前误差值:0.10067637504120643
第7000次遍历整个数据集,当前误差值:0.0316520301351156
第8000次遍历整个数据集,当前误差值:0.11197273131244204
第9000次遍历整个数据集,当前误差值:0.19794007152465481

深度学习课后作业——Course2-Week2

Accuracy: 0.94

总结

优化算法 准确率 曲线平滑度
梯度下降 79.7% 震荡
具有动量的梯度下降算法 79.7% 震荡
Adam优化后的梯度下降 94% 平滑

    具有动量的梯度下降通常可以有很好的效果,但由于小的学习速率和简单的数据集所以它的影响几乎是轻微的。另一方面,Adam明显优于小批量梯度下降和具有动量的梯度下降,如果在这个简单的模型上运行更多时间的数据集,这三种方法都会产生非常好的结果,然而,我们已经看到Adam收敛得更快。

    Adam的一些优点包括相对较低的内存要求(虽然比梯度下降和动量下降更高)和通常运作良好,即使对参数进行微调(除了学习率α)

相关标签: 深度学习