Java加密技术(五)——非对称加密算法的由来DH
程序员文章站
2022-07-04 13:37:34
...
接下来我们分析DH加密算法,一种适基于密钥一致协议的加密算法。
DH
Diffie-Hellman算法(D-H算法),密钥一致协议。是由公开密钥密码*的奠基人Diffie和Hellman所提出的一种思想。简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。换句话说,就是由甲方产出一对密钥(公钥、私钥),乙方依照甲方公钥产生乙方密钥对(公钥、私钥)。以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥(SecretKey)对数据加密。这样,在互通了本地密钥(SecretKey)算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时可以使用对方的公钥和自己的私钥对数据解密。不单单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯!该算法源于中国的同余定理——中国馀数定理。
流程分析:
1.甲方构建密钥对儿,将公钥公布给乙方,将私钥保留;双方约定数据加密算法;乙方通过甲方公钥构建密钥对儿,将公钥公布给甲方,将私钥保留。
2.甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给乙方加密后的数据;乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。
3.乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给甲方加密后的数据;甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。
通过java代码实现如下:Coder类见 Java加密技术(一)
再给出一个测试类:
控制台输出:
如我所言,甲乙双方在获得对方公钥后可以对发送给对方的数据加密,同时也能对接收到的数据解密,达到了数据安全通信的目的!
相关链接:
Java加密技术(一)——BASE64与单向加密算法MD5&SHA&MAC
Java加密技术(二)——对称加密DES&AES
Java加密技术(三)——PBE算法
Java加密技术(四)——非对称加密算法RSA
Java加密技术(五)——非对称加密算法的由来DH
Java加密技术(六)——数字签名算法DSA
Java加密技术(七)——非对称加密算法最高ECC
Java加密技术(八)——数字证书
Java加密技术(九)——初探SSL
Java加密技术(十)——单向认证
Java加密技术(十一)——双向认证
Java加密技术(十二)——*.PFX(*.p12)&个人信息交换文件
DH
Diffie-Hellman算法(D-H算法),密钥一致协议。是由公开密钥密码*的奠基人Diffie和Hellman所提出的一种思想。简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。换句话说,就是由甲方产出一对密钥(公钥、私钥),乙方依照甲方公钥产生乙方密钥对(公钥、私钥)。以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥(SecretKey)对数据加密。这样,在互通了本地密钥(SecretKey)算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时可以使用对方的公钥和自己的私钥对数据解密。不单单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯!该算法源于中国的同余定理——中国馀数定理。
流程分析:
1.甲方构建密钥对儿,将公钥公布给乙方,将私钥保留;双方约定数据加密算法;乙方通过甲方公钥构建密钥对儿,将公钥公布给甲方,将私钥保留。
2.甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给乙方加密后的数据;乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。
3.乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥加密数据,发送给甲方加密后的数据;甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,然后通过本地密钥对数据解密。
通过java代码实现如下:Coder类见 Java加密技术(一)
import java.security.Key; import java.security.KeyFactory; import java.security.KeyPair; import java.security.KeyPairGenerator; import java.security.PublicKey; import java.security.spec.PKCS8EncodedKeySpec; import java.security.spec.X509EncodedKeySpec; import java.util.HashMap; import java.util.Map; import javax.crypto.Cipher; import javax.crypto.KeyAgreement; import javax.crypto.SecretKey; import javax.crypto.interfaces.DHPrivateKey; import javax.crypto.interfaces.DHPublicKey; import javax.crypto.spec.DHParameterSpec; /** * DH安全编码组件 * * @author 梁栋 * @version 1.0 * @since 1.0 */ public abstract class DHCoder extends Coder { public static final String ALGORITHM = "DH"; /** * 默认密钥字节数 * * <pre> * DH * Default Keysize 1024 * Keysize must be a multiple of 64, ranging from 512 to 1024 (inclusive). * </pre> */ private static final int KEY_SIZE = 1024; /** * DH加密下需要一种对称加密算法对数据加密,这里我们使用DES,也可以使用其他对称加密算法。 */ public static final String SECRET_ALGORITHM = "DES"; private static final String PUBLIC_KEY = "DHPublicKey"; private static final String PRIVATE_KEY = "DHPrivateKey"; /** * 初始化甲方密钥 * * @return * @throws Exception */ public static Map<String, Object> initKey() throws Exception { KeyPairGenerator keyPairGenerator = KeyPairGenerator .getInstance(ALGORITHM); keyPairGenerator.initialize(KEY_SIZE); KeyPair keyPair = keyPairGenerator.generateKeyPair(); // 甲方公钥 DHPublicKey publicKey = (DHPublicKey) keyPair.getPublic(); // 甲方私钥 DHPrivateKey privateKey = (DHPrivateKey) keyPair.getPrivate(); Map<String, Object> keyMap = new HashMap<String, Object>(2); keyMap.put(PUBLIC_KEY, publicKey); keyMap.put(PRIVATE_KEY, privateKey); return keyMap; } /** * 初始化乙方密钥 * * @param key * 甲方公钥 * @return * @throws Exception */ public static Map<String, Object> initKey(String key) throws Exception { // 解析甲方公钥 byte[] keyBytes = decryptBASE64(key); X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(keyBytes); KeyFactory keyFactory = KeyFactory.getInstance(ALGORITHM); PublicKey pubKey = keyFactory.generatePublic(x509KeySpec); // 由甲方公钥构建乙方密钥 DHParameterSpec dhParamSpec = ((DHPublicKey) pubKey).getParams(); KeyPairGenerator keyPairGenerator = KeyPairGenerator .getInstance(keyFactory.getAlgorithm()); keyPairGenerator.initialize(dhParamSpec); KeyPair keyPair = keyPairGenerator.generateKeyPair(); // 乙方公钥 DHPublicKey publicKey = (DHPublicKey) keyPair.getPublic(); // 乙方私钥 DHPrivateKey privateKey = (DHPrivateKey) keyPair.getPrivate(); Map<String, Object> keyMap = new HashMap<String, Object>(2); keyMap.put(PUBLIC_KEY, publicKey); keyMap.put(PRIVATE_KEY, privateKey); return keyMap; } /** * 加密<br> * * @param data * 待加密数据 * @param publicKey * 甲方公钥 * @param privateKey * 乙方私钥 * @return * @throws Exception */ public static byte[] encrypt(byte[] data, String publicKey, String privateKey) throws Exception { // 生成本地密钥 SecretKey secretKey = getSecretKey(publicKey, privateKey); // 数据加密 Cipher cipher = Cipher.getInstance(secretKey.getAlgorithm()); cipher.init(Cipher.ENCRYPT_MODE, secretKey); return cipher.doFinal(data); } /** * 解密<br> * * @param data * 待解密数据 * @param publicKey * 乙方公钥 * @param privateKey * 乙方私钥 * @return * @throws Exception */ public static byte[] decrypt(byte[] data, String publicKey, String privateKey) throws Exception { // 生成本地密钥 SecretKey secretKey = getSecretKey(publicKey, privateKey); // 数据解密 Cipher cipher = Cipher.getInstance(secretKey.getAlgorithm()); cipher.init(Cipher.DECRYPT_MODE, secretKey); return cipher.doFinal(data); } /** * 构建密钥 * * @param publicKey * 公钥 * @param privateKey * 私钥 * @return * @throws Exception */ private static SecretKey getSecretKey(String publicKey, String privateKey) throws Exception { // 初始化公钥 byte[] pubKeyBytes = decryptBASE64(publicKey); KeyFactory keyFactory = KeyFactory.getInstance(ALGORITHM); X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(pubKeyBytes); PublicKey pubKey = keyFactory.generatePublic(x509KeySpec); // 初始化私钥 byte[] priKeyBytes = decryptBASE64(privateKey); PKCS8EncodedKeySpec pkcs8KeySpec = new PKCS8EncodedKeySpec(priKeyBytes); Key priKey = keyFactory.generatePrivate(pkcs8KeySpec); KeyAgreement keyAgree = KeyAgreement.getInstance(keyFactory .getAlgorithm()); keyAgree.init(priKey); keyAgree.doPhase(pubKey, true); // 生成本地密钥 SecretKey secretKey = keyAgree.generateSecret(SECRET_ALGORITHM); return secretKey; } /** * 取得私钥 * * @param keyMap * @return * @throws Exception */ public static String getPrivateKey(Map<String, Object> keyMap) throws Exception { Key key = (Key) keyMap.get(PRIVATE_KEY); return encryptBASE64(key.getEncoded()); } /** * 取得公钥 * * @param keyMap * @return * @throws Exception */ public static String getPublicKey(Map<String, Object> keyMap) throws Exception { Key key = (Key) keyMap.get(PUBLIC_KEY); return encryptBASE64(key.getEncoded()); } }
再给出一个测试类:
import static org.junit.Assert.*; import java.util.Map; import org.junit.Test; /** * * @author 梁栋 * @version 1.0 * @since 1.0 */ public class DHCoderTest { @Test public void test() throws Exception { // 生成甲方密钥对儿 Map<String, Object> aKeyMap = DHCoder.initKey(); String aPublicKey = DHCoder.getPublicKey(aKeyMap); String aPrivateKey = DHCoder.getPrivateKey(aKeyMap); System.err.println("甲方公钥:\r" + aPublicKey); System.err.println("甲方私钥:\r" + aPrivateKey); // 由甲方公钥产生本地密钥对儿 Map<String, Object> bKeyMap = DHCoder.initKey(aPublicKey); String bPublicKey = DHCoder.getPublicKey(bKeyMap); String bPrivateKey = DHCoder.getPrivateKey(bKeyMap); System.err.println("乙方公钥:\r" + bPublicKey); System.err.println("乙方私钥:\r" + bPrivateKey); String aInput = "abc "; System.err.println("原文: " + aInput); // 由甲方公钥,乙方私钥构建密文 byte[] aCode = DHCoder.encrypt(aInput.getBytes(), aPublicKey, bPrivateKey); // 由乙方公钥,甲方私钥解密 byte[] aDecode = DHCoder.decrypt(aCode, bPublicKey, aPrivateKey); String aOutput = (new String(aDecode)); System.err.println("解密: " + aOutput); assertEquals(aInput, aOutput); System.err.println(" ===============反过来加密解密================== "); String bInput = "def "; System.err.println("原文: " + bInput); // 由乙方公钥,甲方私钥构建密文 byte[] bCode = DHCoder.encrypt(bInput.getBytes(), bPublicKey, aPrivateKey); // 由甲方公钥,乙方私钥解密 byte[] bDecode = DHCoder.decrypt(bCode, aPublicKey, bPrivateKey); String bOutput = (new String(bDecode)); System.err.println("解密: " + bOutput); assertEquals(bInput, bOutput); } }
控制台输出:
甲方公钥: MIHfMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYXrgHz W5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpDTWSG kx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgANDAAJAdAWBVmIzqcko Ej6qFjLDL2+Y3FPq1iRbnOyOpDj71yKaK1K+FhTv04B0zy4DKcvAASV7/Gv0W+bgqdmffRkqrQ== 甲方私钥: MIHRAgEAMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYX rgHzW5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpD TWSGkx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgAQyAjACJRfy1LyR eHyD+4Hfb+xR0uoIGR1oL9i9Nk6g2AAuaDPgEVWHn+QXID13yL/uDos= 乙方公钥: MIHfMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYXrgHz W5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpDTWSG kx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgANDAAJAVEYSfBA+I9nr dWw3OBv475C+eBrWBBYqt0m6/eu4ptuDQHwV4MmUtKAC2wc2nNrdb1wmBhY1X8RnWkJ1XmdDbQ== 乙方私钥: MIHSAgEAMIGXBgkqhkiG9w0BAwEwgYkCQQD8poLOjhLKuibvzPcRDlJtsHiwXt7LzR60ogjzrhYX rgHzW5Gkfm32NBPF4S7QiZvNEyrNUNmRUb3EPuc3WS4XAkBnhHGyepz0TukaScUUfbGpqvJE8FpD TWSGkx0tFCcbnjUDC3H9c9oXkGmzLik1Yw4cIGI1TQ2iCmxBblC+eUykAgIBgAQzAjEAqaZiCdXp 2iNpdBlHRaO9ir70wo2n32xNlIzIX19VLSPCDdeUWkgRv4CEj/8k+/yd 原文: abc 解密: abc ===============反过来加密解密================== 原文: def 解密: def
如我所言,甲乙双方在获得对方公钥后可以对发送给对方的数据加密,同时也能对接收到的数据解密,达到了数据安全通信的目的!
相关链接:
Java加密技术(一)——BASE64与单向加密算法MD5&SHA&MAC
Java加密技术(二)——对称加密DES&AES
Java加密技术(三)——PBE算法
Java加密技术(四)——非对称加密算法RSA
Java加密技术(五)——非对称加密算法的由来DH
Java加密技术(六)——数字签名算法DSA
Java加密技术(七)——非对称加密算法最高ECC
Java加密技术(八)——数字证书
Java加密技术(九)——初探SSL
Java加密技术(十)——单向认证
Java加密技术(十一)——双向认证
Java加密技术(十二)——*.PFX(*.p12)&个人信息交换文件
上一篇: 公钥算法