ACM-ICPC 2018 焦作赛区网络预赛 L. Poor God Water(杜教)
程序员文章站
2022-03-12 15:39:10
...
题目链接:https://nanti.jisuanke.com/t/31721
样例输入
3
3
4
15
样例输出
20
46
435170
题意:三种食物,肉、鱼、巧克力,每小时吃一种,要求不能存在三种情况:连续三小时吃同一种食物;连续三小时,吃三种不同食物,巧克力在中间吃;连续三小时,第一小时和第三小时吃巧克力。问有几种符合条件的吃法
思路:卡了很久这题,最后抱着试一试的心态,掏出了珍藏已久的杜教模板,过了。机房大佬以前写过一个板子,可以求出递推式,跑了一下,是f(n) = 2*f(n-1) - 1*f(n-2) + 4*f(n-3) + f(n-4)
这个是杜教:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head
int _;
ll n;
namespace linear_seq {
const int N=10010;
ll res[N],base[N],_c[N],_md[N];
vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans=0,pnt=0;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=0;p--) {
mul(res,res,k);
if ((n>>p)&1) {
for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
int main() {
for (scanf("%d",&_);_;_--) {
scanf("%lld",&n);
printf("%d\n",linear_seq::gao(VI{3,9,20,46,106,244,560,1286,2956,6794},n-1));//放前几项
}
return 0;
}
这个是机房大佬的可以出递推式的代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define rep(i,a,n) for(int i=a;i<n;i++)
namespace linear
{
ll mo=1000000009;
vector<ll> v;
double a[105][105],del;
int k;
struct matrix
{
int n;
ll a[50][50];
matrix operator * (const matrix & b)const
{
matrix c;
c.n=n;
rep(i,0,n)rep(j,0,n)c.a[i][j]=0;
rep(i,0,n)rep(j,0,n)rep(k,0,n)
c.a[i][j]=(c.a[i][j]+a[i][k]*b.a[k][j]%mo)%mo;
return c;
}
}A;
bool solve(int n)
{
rep(i,1,n+1)
{
int t=i;
rep(j,i+1,n+1)if(fabs(a[j][i])>fabs(a[t][i]))t=j;
if(fabs(del=a[t][i])<1e-6)return false;
rep(j,i,n+2)swap(a[i][j],a[t][j]);
rep(j,i,n+2)a[i][j]/=del;
rep(t,1,n+1)if(t!=i)
{
del=a[t][i];
rep(j,i,n+2)a[t][j]-=a[i][j]*del;
}
}
return true;
}
void build(vector<ll> V)
{
v=V;
int n=(v.size()-1)/2;
k=n;
while(1)
{
rep(i,0,k+1)
{
rep(j,0,k)a[i+1][j+1]=v[n-1+i-j];
a[i+1][k+1]=1;
a[i+1][k+2]=v[n+i];
}
if(solve(n+1))break;
n--;k--;
}
A.n=k+1;
rep(i,0,A.n)rep(j,0,A.n)A.a[i][j]=0;
rep(i,0,A.n)A.a[i][0]=(int)round(a[i+1][A.n+1]);
rep(i,0,A.n-2)A.a[i][i+1]=1;
A.a[A.n-1][A.n-1]=1;
}
void formula()
{
printf("f(n) =");
rep(i,0,A.n-1)printf(" (%lld)*f(n-%d) +",A.a[i][0],i+1);
printf(" (%lld)\n",A.a[A.n-1][0]);
}
ll cal(ll n)
{
if(n<v.size())return v[n];
n=n-k+1;
matrix B,T=A;
B.n=A.n;
rep(i,0,B.n)rep(j,0,B.n)B.a[i][j]=i==j?1:0;
while(n)
{
if(n&1)B=B*T;
n>>=1;
T=T*T;
}
ll ans=0;
rep(i,0,B.n-1)ans=(ans+v[B.n-2-i]*B.a[i][0]%mo)%mo;
ans=(ans+B.a[B.n-1][0])%mo;
while(ans<0)ans+=mo;
return ans;
}
}
int main()
{
// vector<ll> V={1 ,4 ,9 ,16,25,36,49};
// vector<ll> V={1 ,1 ,2 ,3 ,5 ,8 ,13};
// vector<ll> V={2 ,2 ,3 ,4 ,6 ,9 ,14};
vector<ll> V={3,9,20,46,106,244,560,1286,2956,6794};
linear::build(V);
linear::formula();
ll n;
while(~scanf("%lld",&n))
{
printf("%lld\n",linear::cal(n-1));
}
return 0;
}