欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

扩展中国剩余定理详解

程序员文章站 2022-06-28 11:17:23
前言 阅读本文前,推荐先学一下中国剩余定理。其实不学也无所谓,毕竟两者没啥关系 扩展CRT 我们知道,中国剩余定理是用来解同余方程组 $$\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2}\left( mod\ m_ ......

前言

阅读本文前,推荐先学一下中国剩余定理。其实不学也无所谓,毕竟两者没啥关系

扩展CRT

我们知道,中国剩余定理是用来解同余方程组

$$\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2}\left( mod\ m_{2}\right) \\ \ldots \\ x\equiv c_r\left( mod\ m_r\right) \end{cases}$$

但是有一个非常令人不爽的事情就是它要求$m_1,m_2\ldots,m_r$两两互素

如果某个毒瘤出题人偏要求它们部互素呢?

其实也有解决的办法

就是把出题人吊起来干一顿用扩展中国剩余定理

扩展中国剩余定理跟中国剩余定理没半毛钱关系,一个是用扩展欧几里得,一个是用构造

 

首先我们还是从简单入手,考虑一下如果同余方程组只有两个式子的情况

$x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2}\left( mod\ m_{1}\right)$

将两个式子变形

$x=c_{1}+m_{1}k_{1}\\ x=c_{2}+m_{2}k_{2}$

联立

$c_{1}+m_{1}k_{1}=c_{2}+m_{2}k_{2}$

移项

$m_{1}k_{1}=c_{2}-c_{1}+m_{2}k_{2}$

我们用$(a,b)$表示$a,b$的最大公约数

在这里需要注意,这个方程有解的条件是

$\left( m_{1},m_{2}\right) |\left( c_{2}-c_{1}\right)$,因为后面会用到$\dfrac {\left( c_{2}-c_{1}\right) }{\left( m_{2},m_{1}\right) }$这一项,如果不整除的话肯定会出现小数。

对于上面的方程,两边同除$(m_1,m_2)$

$$\dfrac {m_{1}k_{1}}{\left( m_{1},m_{2}\right) }=\dfrac {c_{2}-c_{1}}{\left( m_{1},m_{2}\right) }+\dfrac {m_{2}k_{2}}{\left( m_{1},m_{2}\right) }$$

$$\dfrac {m_{1}}{\left( m_{1},m_{2}\right) }k_{1}=\dfrac {c_{2}-c_{1}}{\left( m_{1},m_{2}\right) }+\dfrac {m_{2}}{\left( m_{1},m_{2}\right) }k_{2}$$

转换一下

$$\dfrac {m_{1}}{\left( m_{1},m_{2}\right) }k_{1} \equiv \dfrac {c_{2}-c_{1}}{\left( m_{1},m_{2}\right) } (mod\ \dfrac {m_{2}}{\left( m_{1},m_{2}\right) })$$

此时我们已经成功把$k_2$消去了。

同余式两边同除$\dfrac {m_{1}}{\left( m_{1},m_{2}\right) }$

$$k_1\equiv inv({m_1\over(m_1,m_2)},{m_2\over (m_1,m_2)})*{(c_2-c_1)\over (m_1,m_2)}\pmod {{m_2\over(m_1,m_2)}}$$

$inv(a,b)$表示$a$在模$b$意义下的逆元

$$k_1=inv({m_1\over(m_1,m_2)},{m_2\over (m_1,m_2)})*{(c_2-c_1)\over (m_1,m_2)}+{{m_2\over (m_1,m_2)}}*y$$

接下来怎么办呢?这个式子已经化到最简了。。

不要忘了,我们刚开始还有两个式子。我们把$k_1$待回去!

$$x=inv({m_1\over(m_1,m_2)},{m_2\over (m_1,m_2)})*{(c_2-c_1)\over (m_1,m_2)}*m_1+y{{m_1m_2\over (m_1,m_2)}}+c_1$$

$$x\equiv inv({m_1\over(m_1,m_2)},{m_2\over (m_1,m_2)})*{(c_2-c_1)\over (m_1,m_2)}*m_1+c_1\pmod {{m_1m_2\over (m_1,m_2)}}$$

此时,整个式子中的元素我们都已经知道了

具体一点,这个式子可以看做是$$x\equiv c\pmod m$$

其中$$c=(inv({m_1\over (m_1,m_2)},{m_2\over (m_1,m_2)})*{(c_2-c_1)\over (m_1,m_2)})\%{m_2\over (m_1,m_2)}*m_1+c_1$$

$$m={m_1m_2\over (m_1,m_2)}$$

 

推广一下

我们每次把两个同余式合并,求解之后得到一个新的同余式。再把新的同余式和其他的联立,最终就可以求出满足条件的解

 

代码

题目链接

#include<iostream>
#include<cstdio>
#define LL long long 
using namespace std;
const LL MAXN=1e6+10;
LL K,C[MAXN],M[MAXN],x,y;
LL gcd(LL a,LL b)
{
    return b==0?a:gcd(b,a%b);
}
LL exgcd(LL a,LL b,LL &x,LL &y)
{
    if(b==0){x=1,y=0;return a;}
    LL r=exgcd(b,a%b,x,y),tmp;
    tmp=x;x=y;y=tmp-(a/b)*y;
    return r;
}
LL inv(LL a,LL b)
{
    LL r=exgcd(a,b,x,y);
    while(x<0) x+=b;
    return x;
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    while(~scanf("%lld",&K))
    {
        for(LL i=1;i<=K;i++) scanf("%lld%lld",&M[i],&C[i]);
        bool flag=1;
        for(LL i=2;i<=K;i++)
        {
            LL M1=M[i-1],M2=M[i],C2=C[i],C1=C[i-1],T=gcd(M1,M2);
            if((C2-C1)%T!=0) {flag=0;break;}
            M[i]=(M1*M2)/T;
            C[i]= ( inv( M1/T , M2/T ) * (C2-C1)/T ) % (M2/T) * M1 + C1;
            C[i]=(C[i]%M[i]+M[i])%M[i];
        }
        printf("%lld\n",flag?C[K]:-1);
    }
    return 0;
}

 

 

再放道裸题

http://acm.hdu.edu.cn/showproblem.php?pid=1573

题解