欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

从零开始学asyncio(上)

程序员文章站 2022-06-27 22:25:18
这篇文章主要是介绍生成器和IO多路复用机制, 算是学习asyncio需要的预备知识. 这个系列还有另外两篇文章: 从零开始学asyncio(中) 从零开始学asyncio(下) 一. 简单爬虫实例 首先创建一个crawler.py文件, 写入以下代码: import socket req = 'GE ......

  这篇文章主要是介绍生成器和io多路复用机制, 算是学习asyncio需要的预备知识. 这个系列还有另外两篇文章:

一. 简单爬虫实例

  首先创建一个crawler.py文件, 写入以下代码:

import socket


req = 'get / http/1.0\r\nhost:cn.bing.com\r\n\r\n'.encode('utf8')
address = ('cn.bing.com', 80)
db = []


def simple_crawler():
    sock = socket.socket()
    sock.connect(address)
    sock.send(req)
    response = b''
    while 1:
        chunk = sock.recv(1024)
        if chunk == b'':
            sock.close()
            break
        else:
            response += chunk
    db.append(response)


if __name__ == '__main__':
    print('开始爬取...')
    simple_crawler()
    print('获取到{}条数据'.format(len(db)))

运行crawler.py文件, 结果如下:

从零开始学asyncio(上)

其中, simple_crawler函数做了如下几件事:

  1. 创建一个socket对象
  2. 连接服务器
  3. 向服务器发送http请求
  4. 接收服务端的响应内容
  5. 处理和储存响应内容

通过这五个步骤, 我们实现了一个最基本的爬虫实例.

这里的请求之所以使用http1.0协议, 是因为http1.0默认不是长连接, 服务器在发送完数据后会自己断开. 因此当socket接收到空字节的时候, 就说明服务器已经断开了, 也就是说数据已经接收完了.
如果要使用http1.1协议, 那么在请求头中加上connection:close就行.

二. io操作

1.  爬虫实例中的耗时操作

   首先测试一下simple_crawler获取一次数据的用时:

import time
print('开始爬取...')
start=time.time()
simple_crawler()
print('获取到{}条数据'.format(len(db)))
print('本次用时:{:.2f}秒'.format(time.time()-start))

运行几次crawler.py文件, 结果如下:

从零开始学asyncio(上)

相比计算机的计算速度而言, 这段代码的运行速度是相当慢的, 如果现在需要获取100个数据, 那么就需要大约三分半钟的时间.

  现在修改一下crawler.py的代码, 看看各个步骤的执行时间:

import socket
import time


req = 'get / http/1.0\r\nhost:cn.bing.com\r\n\r\n'.encode('utf8')
address = ('cn.bing.com', 80)
db = []


def simple_crawler():
    print('开始运行',time.time())
    sock = socket.socket()
    print('已创建socket对象',time.time())
    sock.connect(address)
    print('已连接服务器',time.time())
    sock.send(req)
    print('已发送请求',time.time())
    response = b''
    while 1:
        chunk = sock.recv(1024)
        if chunk == b'':
            sock.close()
            break
        else:
            response += chunk
    print('已接收响应',time.time())
    db.append(response)
    print('已处理响应',time.time())


if __name__ == '__main__':
    simple_crawler()

代码运行结果如下:

从零开始学asyncio(上)

 可以看到, 在这个程序中, 创建socket对象, 发送http请求, 处理响应结果, 基本都是不耗时的, 耗时操作在于连接服务器和接收响应. 

socket对象的send方法只是将数据写入到内核态, 由系统将数据发送到服务器. 因此, 如果socket对应的内核位置的可写缓冲区还没装满, 并且还能装下本次send的数据, 就不会阻塞, 否则, send操作也会是阻塞的.

2. 阻塞io

  现在运行下面一段代码:

input('按回车退出>>>')
exit()

显然, 如果不按回车或者ctrl+c, 程序就会一直卡在input这一行. 在这段时间, 程序没有做任何事, 只是单纯地等待用户按回车而已, 就像下面这张图:

从零开始学asyncio(上)

io的全称是input/output, 即向/从计算机传输数据的操作, 在针对文件和网络操作中比较常见. 其特点是需要花费一定的等待时间才能完成操作, 上一节的代码中, sock.connect和sock.recv就是io操作, 花费了大量的时间在等待服务器响应上, 因此用时较长.

  一般情况下, 这些基本的io操作是阻塞式的, 也就是程序会卡在等待的期间, 直到io操作完成. 比如input语句, 在用户按下回车之前, 程序处于'死机'状态.

3. 非阻塞io

  现在运行如下代码:

import socket
import time


sock = socket.socket()
sock.setblocking(0)
print('开始连接服务器', time.time())
try:
    sock.connect(('cn.bing.com', 80))
except blockingioerror:
    pass
print('完成连接服务器', time.time())

然后运行:

从零开始学asyncio(上)

 可以看到, 原本耗时的连接操作变得不耗时了.

  调用socket对象的setblocking方法, 传入false, 就可以将这个socket对象设置为非阻塞式的, 这时再调用该对象涉及到io操作的方法, 程序将不会阻塞, 但如果操作不能立即完成, 就会抛出异常.

现在将刚才写的爬虫改为非阻塞的形式:

import socket


req = 'get / http/1.0\r\nhost:cn.bing.com\r\n\r\n'.encode('utf8')
address = ('cn.bing.com', 80)
db = []


def noblocking_crawler():
    sock = socket.socket()
    sock.setblocking(0)
    # connect_ex与connect类似,但在这种情况下不会抛出异常,而是返回错误码
    # 因此,这里使用connect_ex来省略一个try语句
    sock.connect_ex(address)
    while 1:
        try:
            sock.send(req)
            break
        except oserror:
            pass
    response = b''
    while 1:
        try:
            chunk = sock.recv(1024)
            if chunk == b'':
                sock.close()
                break
            else:
                response += chunk
        except blockingioerror:
            pass

    db.append(response)


if __name__ == '__main__':
    print('开始爬取...')
    noblocking_crawler()
    print('获取到{}条数据'.format(len(db)))

非阻塞式io并非意味着不需要等待时间, 而是说程序不会卡在这里, 但这并不代表io操作的等待时间会消失. 因此, 在使用connect方法之后, 需要在while循环中一直重复send, 如果捕获到oserror异常, 就说明还没有连接成功, 也就是io操作还未结束, 于是继续循环, 直到io结束为止. 这一部分的流程如下:

从零开始学asyncio(上)

 recv方法同理.

对函数的运行时间进行测试, 会发现耗时并没有减少, 这是因为io操作中的等待时间并不会消失. 因此, 单纯将程序设置为非阻塞并不能提高效率, 只有利用等待时间执行其它任务, 程序的整体效率才会提高.

三. 生成器

  在上一节中, 非阻塞io之所以没有体现出优势, 是因为没有利用好io操作的等待时间去执行其他程序. 假如现在有abc三个任务, 而有一种机制, 能让任务a遇到io操作时, 切换到任务b, 任务b遇到io操作时, 再切换到任务c, 最后就可以充分利用io操作的等待时间, 从而提升程序的整体运行效率.

  定义一个如下函数:

def gen():
    print('这里是gen函数内部, 现在执行step1')
    yield
    print('这里是gen函数内部, 现在执行step2')
    yield
    print('这里是gen函数内部, 现在执行step3')
    return

 现在查看这个函数的返回值:

g = gen()
print(type(g))

结果如下:

从零开始学asyncio(上)

  在函数中加入yield语句后, 调用这个函数, 函数内的语句就不会执行, 而是返回一个generator对象, 即生成器.

  如果想执行这个函数内部的语句, 可以调用python内置的next函数对生成器进行驱动:

g = gen()
for i in range(1, 4):
    print('这里是gen函数外部,现在是第%s次驱动生成器' % i)
    next(g)

结果如下:

从零开始学asyncio(上)

 

 对于生成器, 在外部调用next对其驱动, 就能执行其内部的代码, 如果执行到yield语句, 就会切换回外部, 下次再驱动, 会从上次结束的地方继续. 程序的执行流程如下:

从零开始学asyncio(上)

只要调用next函数驱动生成器, 程序就会切换到生成器的内部, 从上次停下来的位置开始继续运行, 运行过程中如果遇到yield语句, 再切换回调用next函数的位置. 因此, 使用next和yield, 就可以方便地在不同程序中来回切换. 需要注意的是, 如果生成器内部的程序执行结束, 会抛出stopiteration异常.

  这样看来, 生成器就满足了我们的需求: 即在不同的程序之间切换, 对于一个任务, 在io操作的时候使用yield语句切换到其它任务, 然后在特定时间再用next函数切换回来, 这样就能利用io操作的等待时间.

yield语句除了能暂停程序的执行外, 它还是个生成器内部与外部的双向通道.
需要向外部传值时, yield的用法等于return;
如果要向生成器内部传值, 那么就在生成器内部写成a=yield的形式, 然后在外部调用生成器的send方法将值传给a(此方法同时会驱动生成器)
举个例子:
def gen():
    first_sentence = '天王盖地虎'
    second_sentence = yield first_sentence
    print('生成器从外部获取的值:', second_sentence)
    yield


g = gen()
first_sentence = next(g)
print('外部从生成器获取的值:', first_sentence)
g.send('小鸡炖蘑菇')
有关python生成器的更多内容, 可以参考https://www.python.org/dev/peps/pep-0342/

四. io多路复用

  程序之间切换的问题解决了, 现在的问题是, io操作的等待时间是不确定的, 如果在操作还未结束的时候, 就调用next对生成器进行驱动, 比如还没连接成功时就调用send语句, 显然得不到想要的结果. 因此, 需要一种机制, 能够在io操作完成的时候进行通知, 这时候再驱动生成器进行后续的操作.

  使用python自带的select模块可以对多个socket对象进行监听, 当触发到可读, 可写或者错误事件时, 返回触发事件的socket对象列表.

基于io多路复用和生成器等功能写的爬虫代码如下:

import select
import socket
import time


req = 'get / http/1.0\r\nhost:cn.bing.com\r\n\r\n'.encode('utf8')
address = ('cn.bing.com', 80)
db = []


class gencrawler:

    '''
    这里使用一个类将生成器封装起来,如果要驱动生成器,就调用next_step方法
    另外,这个类还可以获取到使用的socket对象
    '''

    def __init__(self):
        self.sock = socket.socket()
        self.sock.setblocking(0)
        self._gen = self._crawler()

    def next_step(self):
        next(self._gen)

    def _crawler(self):
        self.sock.connect_ex(address)
        yield
        self.sock.send(req)
        response = b''
        while 1:
            yield
            chunk = self.sock.recv(1024)
            if chunk == b'':
                self.sock.close()
                break
            else:
                response += chunk
        db.append(response)


def event_loop(crawlers):
    # 首先,建立sock与crawler对象的映射关系,便于由socket对象找到对应的crawler对象
    # 建立映射的同时顺便调用crawler的next_step方法,让内部的生成器运行起来
    sock_to_crawler = {}
    for crawler in crawlers:
        sock_to_crawler[crawler.sock] = crawler
        crawler.next_step()

    # select.select需要传入三个列表,分别对应要监听的可读,可写和错误事件的socket对象集合
    readable = []
    writeable = [crawler.sock for crawler in crawlers]
    errors = []
    while 1:
        rs, ws, es = select.select(readable, writeable, errors)
        for sock in ws:
            # 当socket对象连接到服务器时,会创建可读缓冲区和可写缓冲区
            # 由于可写缓冲区创建时为空,因此连接成功时,就触发可写事件
            # 这时再转为监听可读事件,接收到数据时,就可以触发可读事件了
            writeable.remove(sock)
            readable.append(sock)
            sock_to_crawler[sock].next_step()
        for sock in rs:
            try:
                sock_to_crawler[sock].next_step()
            except stopiteration:
                # 如果生成器结束了,就说明对应的爬虫任务已经结束,不需要监听事件了
                readable.remove(sock)
        # 所有的事件都结束后,就退出循环
        if not readable and not writeable:
            break


if __name__ == '__main__':
    start = time.time()
    n = 10
    print('开始爬取...')
    event_loop([gencrawler() for _ in range(n)])
    print('获取到{}条数据,用时{:.2f}秒'.format(len(db), time.time()-start))

  首先看看crawler._crawler部分的代码, 在调用connect_ex方法之后, 程序并不能确定什么时候能连接到服务器, 在调用recv方法之前, 程序也不能确定什么时候能收到服务器的数据, 因此, 在这两个位置插入yield语句, 来使程序挂起. 这样, 一个基于生成器的爬虫程序就做好了.

  然后是event_loop部分, 首先, 由于select监听到事件后, 返回的是socket对象, 因此先建立一个socket对象映射crawler对象的字典, 这样当监听到事件时, 就可以马上找到对应的crawler并对其驱动. 映射建立后, 就可以在while循环中持续监听socket对象, 监听到结果时, 就驱动对应的crawler, 直到所有的爬虫任务都结束为止.

  在程序末尾分别设置n=1以及 n=10, 运行程序, 结果如下 :

从零开始学asyncio(上) n=1

从零开始学asyncio(上) n=10

 程序的执行流程如下:

从零开始学asyncio(上)

 

  event_loop负责对多个爬虫任务进行调度, 在这个流程图中,  首先监听到某个事件, 于是驱动对应的crawler2, 而crawler2遇到io操作后, 就使用yield挂起自己, 在crawlerr2的io操作结束之前, event_loop又可以去驱动crawler1, 不同的crawler任务和event_loop穿插运行, 减少了io操作中的时间浪费.

五. 总结

  • io在对文件和网络的操作中较常见. 特点是需要花费一定的等待时间才能完成操作;
  • 在函数中加入yield关键字, 这个函数就能够返回一个生成器. 生成器的特点是运行到yield时会暂停, 而调用next函数由可以将其继续驱动;
  • io多路复用机制可以同时监听多个socket对象.  在本文最后的实例中, 使用io多路复用机制监听socket对象, 触发到事件时, 驱动对应的生成器运行, 当生成器运行到io操作时, 再使用yield语句切换回事件监听, 这样一方面利用了io操作中的等待时间, 提高的运行效率, 一方面实现了多个任务并发的效果.