欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

HashTable类源码解读

程序员文章站 2022-06-26 19:13:54
要在hashtable中存储和检索对象,作为key的对象必须实现hashCode、equals方法。 一般来说,默认的加载因子(0.75)提供了一种对于空间、时间消耗比较好的权衡策略。太高的值(指加载因子loadFactor)虽然减少了空间开销但是增加了检索时间,这反应在对hashtable的很多... ......

HashTable这个类实现了哈希表从key映射到value的数据结构形式。任何非null的对象都可以作为key或者value。

要在hashtable中存储和检索对象,作为key的对象必须实现hashCode、equals方法。

一般来说,默认的加载因子(0.75)提供了一种对于空间、时间消耗比较好的权衡策略。太高的值(指加载因子loadFactor)虽然减少了空间开销但是增加了检索时间,这反应在对hashtable的很多操作中,比如get、put方法。

初始容量的控制也是在空间消耗和rehash操作耗时(该操作耗时较大)二者之间的权衡。 如果初始容量大于哈希表的当前最大的条目数除以加载因子,则不会发生rehash。但是,将初始容量设置过高会浪费空间。

如果有大量的数据需要放进hashtable,则选择设置较大的初始容量比它自动rehash更优。

在Java平台v1.2中,这个类被重新安装以实现Map接口,使它成为Java集合框架的成员。与新的集合实现不同,Hashtable是同步的。如果不需要线程安全的实现,建议使用HashMap代替Hashtable。如果想要一个线程安全的高并发实现,那么建议使用java.util.concurrent.ConcurrentHashMap取代了Hashtable。

HashTable 的属性

  • private transient Entry<?,?>[] table; // table 是存储数据的数组。

  • private transient int count; // 在哈希表中已经存储的数据个数

  • private int threshold; // 哈希表将会在存储数据个数达到这个值时进行rehash,该值 = (int)容量 * 加载因子。

  • private float loadFactor; // 加载因子,默认为 0.75。

  • private transient int modCount = 0; // 哈希表发生结构性改变的次数,这个字段用于在创建迭代器时发生快速失败(fail-fast)发生ConcurrentModificationException。

HashTable 构造器

HashTable 提供了常见的4个构造器,常见的有三个:

指定初始容量、加载因子的构造器

public Hashtable(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);

        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        table = new Entry<?,?>[initialCapacity];
        threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
    }

指定初始容量的构造器

指定初始容量的构造器,其默认加载因子为0.75

public Hashtable(int initialCapacity) {
        this(initialCapacity, 0.75f);
    }

空构造器

空构造器,内部使用了默认初始容量为11,加载因子为0.75.

public Hashtable() {
        this(11, 0.75f);
    }

HashTable 的哈希函数

HashTable 的哈希函数 是将key的hashCode跟最大整数进行按位与,最后对哈希表的存储数组的长度进行取模,以便得到 该 key 在 存储数组中的索引值index。

int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;

哈希桶内部静态类 Entry<K,V>

HashTable 内部数据使用一个静态内部类对象存储,Entry<K,V>,该实体类包含四个属性:

  • final int hash; // 哈希值
  • final K key; // 键
  • V value; // 值
  • Entry<K,V> next; //指向其下一个元素
private static class Entry<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Entry<K,V> next;

        //......
}

put(K key, V value) 存储数据到哈希表

HashTable的put(key, value) 方法,可以将非空数据key-value 键值对放到哈希表中。

put 方法获取 key 的 hashCode值,再将其与Integer的最大值进行按位与,这样是保留整型的最大值的高位 + 哈希值的低位 组合作为 进行 求模的操作数。 使用该值(Integer的最大值进行按位与) 是为了减少哈希碰撞的概率。

index 作为开始在存储数组中的索引值进行匹配,如果index处没有存储数据(即没有进入到for循环中),则直接在此位置上添加该key-value键值对(调用 addEntry(hash, key, value, index); 方法)。
如果在index中已经存储过数据了,又分两种情况:

  • (1) 已经存在的数据的 hash 值 和当前要存储的数据的 hash 值相等, 且 key 也相等。 就表示是数据对象相等,则将旧的数据对象的value设置为此次需要存储的数据对象的value, 并返回旧的数据对象的value。
  • (2)如果不相等且找到后面为null的位置,在此位置插入数据----进入 addEntry(hash, key, value, index); 方法。
public synchronized V put(K key, V value) {
        // Make sure the value is not null
        if (value == null) {
            throw new NullPointerException();
        }

        // Makes sure the key is not already in the hashtable.
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();  //hash值
        int index = (hash & 0x7FFFFFFF) % tab.length; // 高位按位与操作后进行求模减少哈希碰撞的概率
        @SuppressWarnings("unchecked")
        Entry<K,V> entry = (Entry<K,V>)tab[index];
        for(; entry != null ; entry = entry.next) {
            //已经存在结束
            if ((entry.hash == hash) && entry.key.equals(key)) {
                V old = entry.value;
                entry.value = value;
                return old;
            }
        }
        //找到index位置数据为null的位置也结束for循环
        //在此空挡处添加数据项
        addEntry(hash, key, value, index);
        return null;
    }
addEntry(int hash, K key, V value, int index)

该方法用于存储数据key-value对象。
首先会将 modCount 自增, 表示该哈希表会发生结构性改变。
如果哈希表数据个数 count 还没有达到 门槛值 threshold,则直接添加该key-value到index此位置,同时count自增。

如果 count >= threshold 了,就 执行rehash操作(详见rehash方法描述),哈希表扩大,

private void addEntry(int hash, K key, V value, int index) {
        modCount++;//结构性改变

        Entry<?,?> tab[] = table;
        if (count >= threshold) {
            // Rehash the table if the threshold is exceeded
            rehash();

            tab = table;
            hash = key.hashCode();
            index = (hash & 0x7FFFFFFF) % tab.length;
        }

        // Creates the new entry.
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>) tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
}

rehash()

rehash 操作是哈希表的重要且耗时的操作。
rehash 操作会扩大、重新组织哈希表,新的容量 = 旧容量 * 2 + 1。

private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

如果新容量大于存储数组的最大容量:如果旧容量已经等于存储数组的最大容量,则不做任何动作直接返回; 否则,新容量 置为 存储数组的最大容量(已满)。
步骤:
创建一个新的存储数组,容量为新容量newCapacity。
modCount++,结构性变更。
threshold 下一次的rehash门槛更新。
双层for循环,将旧的存储数组元素放到新的存储数组中去。

protected void rehash() {
        int oldCapacity = table.length;
        Entry<?,?>[] oldMap = table;

        // overflow-conscious code
        int newCapacity = (oldCapacity << 1) + 1; // 新的容量 = 旧容量 * 2 + 1
        if (newCapacity - MAX_ARRAY_SIZE > 0) { //如果新容量大于存储数组的最大容量
            if (oldCapacity == MAX_ARRAY_SIZE)
                // Keep running with MAX_ARRAY_SIZE buckets
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];

        modCount++;
        threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        table = newMap;

        for (int i = oldCapacity ; i-- > 0 ;) {
        // 遍历旧的存储数组
            for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
                // 如果当前索引位置存在元素,则处理
                
                Entry<K,V> e = old; // 记录旧的元素
                old = old.next;  // 下一次内层for循环则处理当前元素的下一个元素
                
                //旧的元素重新根据新容量计算hash
                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = (Entry<K,V>)newMap[index];
                
                //将旧数据放到新表中的新index位置上
                newMap[index] = e;//放置旧元素
            }
        }
        //for循环完成旧表数据堆放到新表中去, 就是一次rehash
    }

get(Object key)

get(Object key) 方法根据指定的key获取其value。该方法通过key的hash值,再进行高位按位与,获取到索引index,然后遍历存储数组,直到找到 hash、key均相等的元素,返回其value。

public synchronized V get(Object key) {
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return (V)e.value;
            }
        }
        return null;
    }

contains(Object value)

contains(Object value) 判断哈希表的存储数组中是否包含指定的calue。会遍历数组,去匹配value,找到一个就返回true。

public synchronized boolean contains(Object value) {
        if (value == null) {
            throw new NullPointerException();
        }

        Entry<?,?> tab[] = table;
        for (int i = tab.length ; i-- > 0 ;) {
            for (Entry<?,?> e = tab[i] ; e != null ; e = e.next) {
                if (e.value.equals(value)) {
                    return true;
                }
            }
        }
        return false;
    }

containsKey(Object key)

containsKey(Object key) 方法用于检查哈希表中是否包含指定的key。

public synchronized boolean containsKey(Object key) {
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return true;
            }
        }
        return false;
    }

remove(Object key)

remove 操作移除指定的key。会改变 modCount 、count 的值。

public synchronized V remove(Object key) {
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> e = (Entry<K,V>)tab[index];
        for(Entry<K,V> prev = null ; e != null ; prev = e, e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                modCount++;
                if (prev != null) {
                    prev.next = e.next;
                } else {
                    tab[index] = e.next;
                }
                count--;
                V oldValue = e.value;
                e.value = null;
                return oldValue;
            }
        }
        return null;
    }

clear()

clear() 方法会改变 modCount、count 的值。将存储数组中元素置为 null。

public synchronized void clear() {
        Entry<?,?> tab[] = table;
        modCount++;
        for (int index = tab.length; --index >= 0; )
            tab[index] = null;
        count = 0;
    }

hashCode()

hashTable 的hashCode(0 方法也是有点意思的。
loadFactor = -loadFactor; 这行代码用于防止递归调用hashCode导致堆栈溢出。

public synchronized int hashCode() {
        /*
         * This code detects the recursion caused by computing the hash code
         * of a self-referential hash table and prevents the stack overflow
         * that would otherwise result.  This allows certain 1.1-era
         * applets with self-referential hash tables to work.  This code
         * abuses the loadFactor field to do double-duty as a hashCode
         * in progress flag, so as not to worsen the space performance.
         * A negative load factor indicates that hash code computation is
         * in progress.
         */
        int h = 0;
        if (count == 0 || loadFactor < 0)
            return h;  // Returns zero

        loadFactor = -loadFactor;  // Mark hashCode computation in progress
        Entry<?,?>[] tab = table;
        for (Entry<?,?> entry : tab) {
            while (entry != null) {
                h += entry.hashCode();
                entry = entry.next;
            }
        }

        loadFactor = -loadFactor;  // Mark hashCode computation complete

        return h;
    }