欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

pytorch训练神经网络爆内存的解决方案

程序员文章站 2022-06-23 07:50:09
训练的时候内存一直在增加,最后内存爆满,*中断。后来换了一个电脑发现还是这样,考虑是代码的问题。检查才发现我的代码两次存了loss,只有一个地方写的是loss.item()。问题就在loss,因为l...

训练的时候内存一直在增加,最后内存爆满,*中断。

pytorch训练神经网络爆内存的解决方案

后来换了一个电脑发现还是这样,考虑是代码的问题。

检查才发现我的代码两次存了loss,只有一个地方写的是loss.item()。问题就在loss,因为loss是variable类型。

要写成loss_train = loss_train + loss.item(),不能直接写loss_train = loss_train + loss。否则就会发现随着epoch的增加,占的内存也在一点一点增加。

算是一个小坑吧,希望大家还是要仔细。

补充:pytorch神经网络解决回归问题(非常易懂)

对于pytorch的深度学习框架

在建立人工神经网络时整体的步骤主要有以下四步:

1、载入原始数据

2、构建具体神经网络

3、进行数据的训练

4、数据测试和验证

pytorch神经网络的数据载入,以minist书写字体的原始数据为例:

import torch
import matplotlib.pyplot as  plt
def plot_curve(data):
    fig=plt.figure()
    plt.plot(range(len(data)),data,color="blue")
    plt.legend(["value"],loc="upper right")
    plt.xlabel("step")
    plt.ylabel("value")
    plt.show()
 
def plot_image(img,label,name):
    fig=plt.figure()
    for i in range(6):
        plt.subplot(2,3,i+1)
        plt.tight_layout()
        plt.imshow(img[i][0]*0.3081+0.1307,cmap="gray",interpolation="none")
        plt.title("{}:{}".format(name, label[i].item()))
        plt.xticks([])
        plt.yticks([])
    plt.show()
def one_hot(label,depth=10):
    out=torch.zeros(label.size(0),depth)
    idx=torch.longtensor(label).view(-1,1)
    out.scatter_(dim=1,index=idx,value=1)
    return out
 
batch_size=512
import torch
from torch import nn                         #完成神经网络的构建包
from torch.nn import functional as f         #包含常用的函数包
from torch import optim                      #优化工具包
import torchvision                           #视觉工具包
import  matplotlib.pyplot as plt
from utils import plot_curve,plot_image,one_hot
#step1 load dataset   加载数据包
train_loader=torch.utils.data.dataloader(
    torchvision.datasets.mnist("minist_data",train=true,download=true,transform=torchvision.transforms.compose(
        [torchvision.transforms.totensor(),torchvision.transforms.normalize((0.1307,),(0.3081,))
         ])),
    batch_size=batch_size,shuffle=true)
test_loader=torch.utils.data.dataloader(
    torchvision.datasets.mnist("minist_data",train=true,download=false,transform=torchvision.transforms.compose(
        [torchvision.transforms.totensor(),torchvision.transforms.normalize((0.1307,),(0.3081,))
         ])),
    batch_size=batch_size,shuffle=false)
x,y=next(iter(train_loader))
print(x.shape,y.shape)
plot_image(x,y,"image")
print(x)
print(y)

以构建一个简单的回归问题的神经网络为例,

其具体的实现代码如下所示:

import torch
import torch.nn.functional as f  # 激励函数都在这
 
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2 * torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
 
class net(torch.nn.module):  # 继承 torch 的 module(固定)
    def __init__(self, n_feature, n_hidden, n_output):  # 定义层的信息,n_feature多少个输入, n_hidden每层神经元, n_output多少个输出
        super(net, self).__init__()  # 继承 __init__ 功能(固定)
        # 定义每层用什么样的形式
        self.hidden = torch.nn.linear(n_feature, n_hidden)  # 定义隐藏层,线性输出
        self.predict = torch.nn.linear(n_hidden, n_output)  # 定义输出层线性输出
 
    def forward(self, x):  # x是输入信息就是data,同时也是 module 中的 forward 功能,定义神经网络前向传递的过程,把__init__中的层信息一个一个的组合起来
        # 正向传播输入值, 神经网络分析出输出值
        x = f.relu(self.hidden(x))  # 定义激励函数(隐藏层的线性值)
        x = self.predict(x)  # 输出层,输出值
        return x 
 
net = net(n_feature=1, n_hidden=10, n_output=1) 
print(net)  # net 的结构
"""
net (
  (hidden): linear (1 -> 10)
  (predict): linear (10 -> 1)
)
"""
# optimizer 是训练的工具
optimizer = torch.optim.sgd(net.parameters(), lr=0.2)  # 传入 net 的所有参数, 学习率
loss_func = torch.nn.mseloss()  # 预测值和真实值的误差计算公式 (均方差)
 
for t in range(100):  # 训练的步数100步
    prediction = net(x)  # 喂给 net 训练数据 x, 每迭代一步,输出预测值
 
    loss = loss_func(prediction, y)  # 计算两者的误差
 
    # 优化步骤:
    optimizer.zero_grad()  # 清空上一步的残余更新参数值
    loss.backward()  # 误差反向传播, 计算参数更新值
    optimizer.step()  # 将参数更新值施加到 net 的 parameters 上
 
import matplotlib.pyplot as plt 
plt.ion()  # 实时画图something about plotting 
for t in range(200):
    prediction = net(x)  # input x and predict based on x 
    loss = loss_func(prediction, y)  # must be (1. nn output, 2. target) 
    optimizer.zero_grad()  # clear gradients for next train
    loss.backward()  # backpropagation, compute gradients
    optimizer.step()  # apply gradients
 
    if t % 5 == 0:  # 每五步绘一次图
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)
 
plt.ioff()
plt.show()

pytorch训练神经网络爆内存的解决方案

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。