282. 石子合并(区间DP)
程序员文章站
2022-03-11 16:17:07
设有N堆石子排成一排,其编号为1,2,3,…,N。每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;如果第二步是先合并2,3堆,则代价为7,得到4 7....
设有N堆石子排成一排,其编号为1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;
如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
输入格式
第一行一个数N表示石子的堆数N。
第二行N个数,表示每堆石子的质量(均不超过1000)。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤N≤3001≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 310;
int n;
int s[N];
int f[N][N];
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) scanf("%d", &s[i]);
for (int i = 1; i <= n; i ++ ) s[i] += s[i - 1];
for (int len = 2; len <= n; len ++ )
for (int i = 1; i + len - 1 <= n; i ++ )
{
int l = i, r = i + len - 1;
f[l][r] = 1e8;
for (int k = l; k < r; k ++ )
f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
}
printf("%d\n", f[1][n]);
return 0;
}
本文地址:https://blog.csdn.net/qq_43738331/article/details/109268963