欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现mean-shift聚类算法

程序员文章站 2022-06-15 17:41:40
本文实例为大家分享了python实现mean-shift聚类算法的具体代码,供大家参考,具体内容如下1、新建meanshift.py文件import numpy as np# 定义 预先设定 的阈值s...

本文实例为大家分享了python实现mean-shift聚类算法的具体代码,供大家参考,具体内容如下

1、新建meanshift.py文件

import numpy as np

# 定义 预先设定 的阈值
stop_threshold = 1e-4
cluster_threshold = 1e-1


# 定义度量函数
def distance(a, b):
 return np.linalg.norm(np.array(a) - np.array(b))


# 定义高斯核函数
def gaussian_kernel(distance, bandwidth):
 return (1 / (bandwidth * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((distance / bandwidth)) ** 2)


# mean_shift类
class mean_shift(object):
 def __init__(self, kernel=gaussian_kernel):
  self.kernel = kernel

 def fit(self, points, kernel_bandwidth):

  shift_points = np.array(points)
  shifting = [true] * points.shape[0]

  while true:
   max_dist = 0
   for i in range(0, len(shift_points)):
    if not shifting[i]:
     continue
    p_shift_init = shift_points[i].copy()
    shift_points[i] = self._shift_point(shift_points[i], points, kernel_bandwidth)
    dist = distance(shift_points[i], p_shift_init)
    max_dist = max(max_dist, dist)
    shifting[i] = dist > stop_threshold

   if(max_dist < stop_threshold):
    break
  cluster_ids = self._cluster_points(shift_points.tolist())
  return shift_points, cluster_ids

 def _shift_point(self, point, points, kernel_bandwidth):
  shift_x = 0.0
  shift_y = 0.0
  scale = 0.0
  for p in points:
   dist = distance(point, p)
   weight = self.kernel(dist, kernel_bandwidth)
   shift_x += p[0] * weight
   shift_y += p[1] * weight
   scale += weight
  shift_x = shift_x / scale
  shift_y = shift_y / scale
  return [shift_x, shift_y]

 def _cluster_points(self, points):
  cluster_ids = []
  cluster_idx = 0
  cluster_centers = []

  for i, point in enumerate(points):
   if(len(cluster_ids) == 0):
    cluster_ids.append(cluster_idx)
    cluster_centers.append(point)
    cluster_idx += 1
   else:
    for center in cluster_centers:
     dist = distance(point, center)
     if(dist < cluster_threshold):
      cluster_ids.append(cluster_centers.index(center))
    if(len(cluster_ids) < i + 1):
     cluster_ids.append(cluster_idx)
     cluster_centers.append(point)
     cluster_idx += 1
  return cluster_ids

2、调用上述py文件

# -*- coding: utf-8 -*-
"""
created on tue oct 09 11:02:08 2018

@author: muli
"""

from sklearn.datasets.samples_generator import make_blobs
import matplotlib.pyplot as plt 
import random
import numpy as np
import meanshift


def colors(n):
 ret = []
 for i in range(n):
 ret.append((random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)))
 return ret

def main():
 centers = [[-1, -1], [-1, 1], [1, -1], [1, 1]]
 x, _ = make_blobs(n_samples=300, centers=centers, cluster_std=0.4)

 mean_shifter = meanshift.mean_shift()
 _, mean_shift_result = mean_shifter.fit(x, kernel_bandwidth=0.5)

 np.set_printoptions(precision=3)
 print('input: {}'.format(x))
 print('assined clusters: {}'.format(mean_shift_result))
 color = colors(np.unique(mean_shift_result).size)

 for i in range(len(mean_shift_result)):
  plt.scatter(x[i, 0], x[i, 1], color = color[mean_shift_result[i]])
 plt.show()


if __name__ == '__main__':
 main()

结果如图所示:

python实现mean-shift聚类算法

参考

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。