欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

Hadoop之使用python实现数据集合间join操作

程序员文章站 2022-06-07 11:44:04
...

hadoop之steaming介绍 hadoop有个工具叫做steaming,能够支持python、shell、C++、PHP等其他任何支持标准输入stdin及标准输出stdout的语言,其运行原理可以通过和标准java的map-reduce程序对比来说明: 使用原生java语言实现Map-reduce程序 hadoop准备好数据

hadoop之steaming介绍

hadoop有个工具叫做steaming,能够支持python、shell、C++、PHP等其他任何支持标准输入stdin及标准输出stdout的语言,其运行原理可以通过和标准java的map-reduce程序对比来说明:

使用原生java语言实现Map-reduce程序
  1. hadoop准备好数据后,将数据传送给java的map程序
  2. java的map程序将数据处理后,输出O1
  3. hadoop将O1打散、排序,然后传给不同的reduce机器
  4. 每个reduce机器将传来的数据传给reduce程序
  5. reduce程序将数据处理,输出最终数据O2
借助hadoop streaming使用python语言实现Map-reduce程序
  1. hadoop准备好数据后,将数据传送给java的map程序
  2. java的map程序将数据处理成“键/值”对,并传送给python的map程序
  3. python的map程序将数据处理后,将结果传回给java的map程序
  4. java的map程序将数据输出为O1
  5. hadoop将O1打散、排序,然后传给不同的reduce机器
  6. 每个reduce机器将传来的数据处理成“键/值”对,并传送给python的reduce程序
  7. python的reduce程序将数据处理后,将结果返回给java的reduce程序
  8. java的reduce程序将数据处理,输出最终数据O2

上面红色表示map的对比,蓝色表示reduce的对比,可以看出streaming程序多了一步中间处理,这样说来steaming程序的效率和性能应该低于java版的程序,然而python的开发效率、运行性能有时候会大于java,这就是streaming的优势所在。

hadoop之实现集合join的需求

hadoop是用来做数据分析的,大都是对集合进行操作,因此该过程中将集合join起来使得一个集合能得到另一个集合对应的信息的需求非常常见。

比如以下这个需求,有两份数据:学生信息(学号,姓名)和学生成绩(学号、课程、成绩),特点是有个共同的主键“学号”,现在需要将两者结合起来得到数据(学号,姓名,课程,成绩),计算公式:

学号,姓名) join (学号,课程,成绩)= (学号,姓名,课程,成绩)

数据事例1-学生信息:

学号sno 姓名name
01 name1
02 name2
03 name3
04 name4

数据事例2:-学生成绩:

学号sno 课程号courseno 成绩grade
01 01 80
01 02 90
02 01 82
02 02 95

期待的最终输出:

学号sno 姓名name 课程courseno 成绩grade
01 name1 01 80
01 name1 02 90
02 name2 01 82
02 name2 02 95

实现join的注意点和易踩坑总结

如果你想写一个完善健壮的map reduce程序,我建议你首先弄清楚输入数据的格式、输出数据的格式,然后自己手动构建输入数据并手动计算出输出数据,这个过程中你会发现一些写程序中需要特别处理的地方:

  1. 实现join的key是哪个,是1个字段还是2个字段,本例中key是sno,1个字段
  2. 每个集合中key是否可以重复,本例中数据1不可重复,数据2的key可以重复
  3. 每个集合中key的对应值是否可以不存在,本例中有学生会没成绩,所以数据2的key可以为空

第1条会影响到hadoop启动脚本中key.fields和partition的配置,第2条会影响到map-reduce程序中具体的代码实现方式,第3条同样影响代码编写方式。

hadoop实现join操作的思路

具体思路是给每个数据源加上一个数字标记label,这样hadoop对其排序后同一个字段的数据排在一起并且按照label排好序了,于是直接将相邻相同key的数据合并在一起输出就得到了结果。

1、 map阶段:给表1和表2加标记,其实就是多输出一个字段,比如表一加标记为0,表2加标记为2;

2、 partion阶段:根据学号key为第一主键,标记label为第二主键进行排序和分区

3、 reduce阶段:由于已经按照第一主键、第二主键排好了序,将相邻相同key数据合并输出

hadoop使用python实现join的map和reduce代码

mapper.py的代码:

# -*- coding: utf-8 -*-
#Mapper.py
#来自疯狂的蚂蚁www.crazyant.net
import os
import sys
#mapper脚本
def mapper():
	#获取当前正在处理的文件的名字,这里我们有两个输入文件
	#所以要加以区分
	filepath = os.environ["map_input_file"]
	filename = os.path.split(filepath)[-1]
	for line in sys.stdin:
		if line.strip()=="":
			continue
		fields = line[:-1].split("\t")
		sno = fields[0]
		#以下判断filename的目的是不同的文件有不同的字段,并且需加上不同的标记
		if filename == 'data_info':
			name = fields[1]
			#下面的数字'0'就是为数据源1加上的统一标记
			print '\t'.join((sno,'0',name))
		elif filename == 'data_grade':
			courseno = fields[1]
			grade = fields[2]
			#下面的数字'1'就是为数据源1加上的统一标记
			print '\t'.join((sno,'1',courseno,grade))
if __name__=='__main__':
	mapper()

reducer的代码:

# -*- coding: utf-8 -*-
#reducer.py
#来自疯狂的蚂蚁www.crazyant.net
import sys
def reducer():
	#为了记录和上一个记录的区别,用lastsno记录上个sno
	lastsno = ""
	for line in sys.stdin:
		if line.strip()=="":
			continue
		fields = line[:-1].split("\t")
		sno = fields[0]
		'''
		处理思路:
		遇见当前key与上一条key不同并且label=0,就记录下来name值,
		当前key与上一条key相同并且label==1,则将本条数据的courseno、
		grade联通上一条记录的name一起输出成最终结果
		'''
		if sno != lastsno:
			name=""
			#这里没有判断label==1的情况,
			#因为sno!=lastno,并且label=1表示该条key没有数据源1的数据
			if fields[1]=="0":
				name=fields[2]
		elif sno==lastno:
			#这里没有判断label==0的情况,
			#因为sno==lastno并且label==0表示该条key没有数据源2的数据
			if fields[2]=="1":
				courseno=fields[2]
				grade=fields[3]
				if name:
					print '\t'.join((lastsno,name,courseno,grade))
		lastsno = sno
if __name__=='__main__':
	reducer()

使用shell脚本启动hadoop程序的方法:

#先删除输出目录
~/hadoop-client/hadoop/bin/hadoop fs -rmr /hdfs/jointest/output
#来自疯狂的蚂蚁www.crazyant.net
#注意,下面配置中的环境值每个人机器不一样
~/hadoop-client/hadoop/bin/hadoop streaming \
	-D mapred.map.tasks=10 \
	-D mapred.reduce.tasks=5 \
	-D mapred.job.map.capacity=10 \
	-D mapred.job.reduce.capacity=5 \
	-D mapred.job.name="join--sno_name-sno_courseno_grade" \
	-D num.key.fields.for.partition=1 \
	-D stream.num.map.output.key.fields=2 \
	-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \
	-input "/hdfs/jointest/input/*" \
	-output "/hdfs/jointest/output" \
	-mapper "python26/bin/python26.sh mapper.py" \
	-reducer "python26/bin/python26.sh reducer.py" \
	-file "mapper.py" \
	-file "reducer.py" \
	-cacheArchive "/share/python26.tar.gz#python26"
#看看运行成功没,若输出0则表示成功了
echo $?

可以自己手工构造输入输出数据进行测试,本程序是验证过的。

更多需要注意的地方

hadoop的join操作可以分为很多类型,各种类型脚本的编写有所不同,其分类是按照key字段数目、value字段数目、key是否可重复来划分的,以下是一个个人总结的对照表,表示会影响的地方:

影响类型 影响的范围
key字段数目 1、启动脚本中num.key.fields.for.partition的配置2、启动脚本中stream.num.map.output.key.fields的配置

3、map和reduce脚本中key的获取

4、map和reduce脚本中每一条数据和上一条数据比较的方法key是否可重复如果数据源1可重复,标记为M;数据源2可重复标记为N,那么join可以分为:1*1、M*1、M*N类型

1*1类型:reduce中先记录第一个value,然后在下一条直接合并输出;

M*1类型:将类型1作为标记小的输出,然后每次遇见label=1就记录value,每遇见一次label=2就输出一次最终结果;

M*N类型:遇见类型1,就用数组记录value值,遇见label=2就将将记录的数组值全部连同该行value输出。value字段数目影响每次label=1时记录的数据个数,需要将value都记录下来

原文链接 转载须注明!