欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【UVa】【DP】1632 Alibaba

程序员文章站 2022-06-06 13:38:33
...

UVa 1632 Alibaba

题目

◇题目传送门◆(由于UVa较慢,这里提供一个vjudge的链接)
◇题目传送门(vjudge)◆

题目大意

x轴上有N个点,其中第i个点的位置为xi,且它在第di秒后会消失。Alibaba可以从任意一点出发,且移动一个单位长度需要花一秒。求Alibaba访问完所有点的最短时间,无解时输出No solution。

思路

我们可以贪心地想,若我们在访问完区间[i,j]中的点后,必然会位于点i或点j。所以,我们就将这道题转化为了区间DP。

定义状态f[i][j][0/1]为访问完区间[i,j]中的点后,0表示位于i点,1表示位于j点。

则得出状态转移方程:

f[i][j][k]={min(f[i+1][j][0]+a[i+1]a[i],f[i+1][j][1]+a[j]a[i])k=0min(f[i][j1][0]+a[j]a[i],f[i][j1][1]+a[j]a[j1])k=1

其中1iN,i+1jN

解释一下:

首先对于状态f[i][j][0],此时Alibaba需要走到点i,画个图解释一下:
【UVa】【DP】1632 Alibaba
则对于状态f[i][j][0],在f[i+1][j][0]+a[i+1]a[i],f[i+1][j][1]+a[j]a[i]之间取最小值即可。

对于状态f[i][j][1],我们还是画个图解释:
【UVa】【DP】1632 Alibaba
即在f[i][j1][0]+a[j]a[i],f[i][j1][1]+a[j]a[j1]之间取最小值。

接下来就是最后一步:

如何判断无解?

若在计算某一状态时发现当前所处的点的时间已经超出了这个点的d,则将该状态赋值为INF。

最后判断min(f[1][N][0],f[1][N][1])是否大于等于INF即可。

正解代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int Maxn=10000;
const int INF=0x3f3f3f3f;

int N,p[Maxn+5],d[Maxn+5];
int f[Maxn+5][Maxn+5][2];

int main() {
    #ifdef LOACL
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    #endif
    while(scanf("%d",&N)!=EOF) {
        for(int i=1;i<=N;i++)
            scanf("%d %d",&p[i],&d[i]);
        for(int i=1;i<=N;i++)
            f[i][i][0]=f[i][i][1]=0;//访问区间[i,i]时所需时间为0
        for(int i=N-1;i>=1;i--)
            for(int j=i+1;j<=N;j++) {
                f[i][j][0]=min(f[i+1][j][0]+p[i+1]-p[i],f[i+1][j][1]+p[j]-p[i]);
                if(f[i][j][0]>=d[i])f[i][j][0]=INF;
                f[i][j][1]=min(f[i][j-1][0]+p[j]-p[i],f[i][j-1][1]+p[j]-p[j-1]);
                if(f[i][j][1]>=d[j])f[i][j][1]=INF;
            }
        int ans=min(f[1][N][0],f[1][N][1]);
        if(ans>=INF)puts("No solution");
        else printf("%d\n",ans);
        memset(f,0,sizeof f);
    }
    return 0;
}
相关标签: UVa 区间DP

上一篇: L1 L2 LASSO问题

下一篇: 二分查找