欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Codeforces999E——Reachability from the Capital

程序员文章站 2022-03-09 22:38:27
...

There are n cities and m roads in Berland. Each road connects a pair of cities. The roads in Berland are one-way.
What is the minimum number of new roads that need to be built to make all the cities reachable from the capital?
New roads will also be one-way.
Input
The first line of input consists of three integers n, m and s (1≤n≤5000,0≤m≤5000,1≤s≤n) — the number of cities, the number of roads and the index of the capital. Cities are indexed from 1 to n.
The following m lines contain roads: road i is given as a pair of cities ui, vi (1≤ui,vi≤n, ui≠vi). For each pair of cities (u,v), there can be at most one road from u to v. Roads in opposite directions between a pair of cities are allowed (i.e. from u to v and from v to u).
Output
Print one integer — the minimum number of extra roads needed to make all the cities reachable from city s. If all the cities are already reachable from s, print 0.
Examples
Input
9 9 1
1 2
1 3
2 3
1 5
5 6
6 1
1 8
9 8
7 1
Output
3
Input
5 4 5
1 2
2 3
3 4
4 1
Output
1
Note
The first example is illustrated by the following:
Codeforces999E——Reachability from the Capital
For example, you can add roads (6,4), (7,9), (1,7) to make all the cities reachable from s=1.
The second example is illustrated by the following:
Codeforces999E——Reachability from the Capital
In this example, you can add any one of the roads (5,1), (5,2), (5,3), (5,4) to make all the cities reachable from s=5.

这题是看了大佬的博客才大概有的思路
其实就是求一个有向图有多少个不同于capital点的根节点,因为只要从capital连一个到这些根节点,根节点以下的点也可以到达
所以就是用dfs来做
然后注意一个很重要的问题,环的问题,因为dfs是是循环进行的,也就是dfs(1,1) dfs(2,2) 这样,所以当有环的情况而且capital点不是1的话,他会在1的dfs时被记录,变成根节点是1,但其实这种含有capital点的环的根节点应该算capital点,所以在for循环之前要先dfs(s,s)

代码:

#include <cstdio>
#include <algorithm>
#include <vector>
#include <set>
#include <cstring>
using namespace std;
const int MAXN=5050;
int n,m,s;
int u,v;
//保存根节点
int fa[MAXN];
int vis[MAXN];
vector<int> G[MAXN];
set<int> res;
void dfs(int u,int f){
    //如果父亲节点已经是根节点
    if(fa[u]==f){
        return;
    }
    fa[u]=f;
    for(int i=0;i<G[u].size();i++){
        dfs(G[u][i],f);
    }
}
int main(void){
    scanf("%d%d%d",&n,&m,&s);
    while(m--){
        scanf("%d%d",&u,&v);
        G[u].push_back(v);
    }
    //先对起点dfs 比如环1-2-3-4-1  2为起点 如果不先dfs(2,2) 最终2的根节点记为1 而实际上要记为2
    dfs(s,s);
    //遍历一遍确定根节点
    for(int i=1;i<=n;i++){
        if(fa[i]==0){
            dfs(i,i);
        }
    }
    //标记s是否是根节点之一 如果是 则结果要减去1
    int flag=0;
    for(int i=1;i<=n;i++){
        //printf("%d ",fa[i]);
        if(fa[i]==s){
            flag=1;
        }
        res.insert(fa[i]);
    }
    //printf("\n");
    printf("%d\n",res.size()-flag);
    return 0;
}
相关标签: 图论 dfs