欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P4926 [1007]倍杀测量者(差分约束)

程序员文章站 2022-06-04 20:09:32
题意 "题目链接" Sol 题目中的两个限制条件xian $$A_i \geqslant (K_i T)B_i$$ $$A_i(K_i + T) \geq B_i$$ 我们需要让这两个至少有一个不满足 直接差分约束建边即可 这里要用到两个trick 1. 若某个变量有固定取值的时候我们可以构造两个等 ......

题意

题目链接

sol

题目中的两个限制条件xian

\[a_i \geqslant (k_i - t)b_i\]

\[a_i(k_i + t) \geq b_i\]

我们需要让这两个至少有一个不满足

直接差分约束建边即可

这里要用到两个trick

  1. 若某个变量有固定取值的时候我们可以构造两个等式\(c_i - 0 \leqslant x, c_i - 0 \geqslant x\)

  2. 乘法的大小判断可以取log变加法,因为\(y = log(x)\)也是个单调函数

#include<bits/stdc++.h> 
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
#define ll long long
template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;}
using namespace std;
const int maxn = 4001, inf = 1e9;
const double eps = 1e-5;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n, m, k;
struct edge {
    int v, op;
    double k, w; 
};
vector<edge> v[maxn];
void addedge(int x, int y, double w, int opt, double k) {
    v[x].push_back({y, opt, k, w});
}
double dis[maxn];
bool vis[maxn];
int times[maxn];
bool spfa(double add) {
    queue<int> q; q.push(n + 1);
    for(int i = 0; i <= n; i++) dis[i] = -1e18, vis[i] = times[i] = 0;
    dis[n + 1] = 0; ++times[n + 1];
    while(!q.empty()) {
        int p = q.front(); q.pop(); vis[p] = 0;
        for(auto &x : v[p]) {
            int opt = x.op, to = x.v; double k = x.k, w;
            if(opt == 0) w = x.w;
            else if(opt == 1) w = log2(k - add);
            else w = -log2(k + add);
            if(dis[to] < dis[p] + w) {
                dis[to] = dis[p] + w;
                if(!vis[to]) {
                    q.push(to);
                    vis[to] = 1;
                    ++times[to];
                    if(times[to] >= n + 1) return 0; 
                }
            }
        }
    }
    return 1;
}
signed main() {
    n = read(); m = read(); k = read();
    double l = 0, r = 10;
    for(int i = 1; i <= m; i++) {
        int opt = read(), x = read(), y = read(); double k = read();
        addedge(y, x, 0, opt, k);
        if(opt == 1) chmin(r, k);
    }
    for(int i = 1; i <= k; i++) {
        int c = read(); double x = read();
        addedge(0, c, log2(x), 0, 0);
        addedge(c, 0, -log2(x), 0, 0);
    }
    for(int i = 0; i <= n; i++) addedge(n + 1, i, 0, 0, 0);
    if(spfa(0))  return puts("-1"), 0;
    while(r - l > eps) {
        double mid = (r + l) / 2;
        if(spfa(mid)) r = mid;
        else l = mid;
    }
    printf("%lf", l);
    return 0;
}