求割点(邻接表无向图)C~
程序员文章站
2022-06-03 16:53:38
...
上一篇 : 图割点(邻接矩阵)
邻接表 : O(N+M)
邻接矩阵 : O(N^2)
核心代码 :
void dfs(int cur, int father, Graph g, Info* info)
{
info->index++;
info->num[cur] = info->index;
info->low[cur] = info->index;
info->child = 0;//记录每个顶点孩子数量
ENode *node;
node = g.vex[cur].first_edge;
while(node != NULL){ //访问 每个 临接点
if(info->num[node->ivex] == 0){//当前顶点未访问
info->child++;//当前顶点孩子数加1
dfs(node->ivex, cur, g, info);//
info->low[cur] = min(info->low[cur], info->low[node->ivex]);
if(info->root != cur && info->low[node->ivex] >= info->num[cur] )
{
info->flag[cur] = 1;
info->cnt++;
}
if(info->root == cur && info->child == 2)
{
info->flag[cur] = 1;
info->cnt++;
}
}
else if(node->ivex != father){
info->low[cur] = min(info->low[cur], info->num[node->ivex]);
}
node = node->next_edge;
}
return ;
}
完整实现 :
#include<stdio.h>
#include<stdlib.h>
#include<ctype.h>
#define MAXVEX 100
typedef char VertexType;
typedef int WeightType;
typedef struct ENode {
int ivex;//顶点 索引
WeightType weight;
struct ENode* next_edge;
}ENode;
typedef struct Info{// 记录
int index;
int root;
int child;
int num[MAXVEX];//当前顶点的时间戳
int low[MAXVEX];//能访问到的最早顶点的时间戳
int flag[MAXVEX];
int cnt;
}Info;
typedef struct VNode {
VertexType data; // 顶点 信息
ENode* first_edge;
}VNode;
typedef struct Graph {
VNode vex[MAXVEX];
int vex_num, edge_num;
}Graph;
int index;
char read_char()
{
char ch;
do {
ch = getchar();
} while (!isalpha(ch));
return ch;
}
int get_pos(Graph g, char ch)
{
int i;
for (i = 0; i < g.vex_num; i++) {
if (ch == g.vex[i].data)
return i;
}
return -1;
}
void link_last(ENode* list, ENode *last)
{
ENode* p;
p = list;
while (p->next_edge != NULL) {
p = p->next_edge;
}
p->next_edge = last;
}
void create_graph(Graph *g)
{
int i, w;
printf("请输入顶点数和边数:\n");
scanf("%d%d", &g->vex_num, &g->edge_num);
printf("请输入顶点信息:\n");
for (i = 0; i < g->vex_num; i++) {
g->vex[i].first_edge = NULL;
g->vex[i].data = read_char();
}
printf("请输入边 :\n");
for (i = 0; i < g->edge_num; i++) {
int p1, p2;
char c1, c2;
c1 = read_char();
c2 = read_char();
// scanf("%d", &w);
p1 = get_pos(*g, c1);
p2 = get_pos(*g, c2);
ENode* node1, *node2;
node1 = (ENode*)malloc(sizeof(ENode));
if (node1 == NULL) {
printf("error");
return;
}
node1->next_edge = NULL;
node1->ivex = p2;
if (g->vex[p1].first_edge == NULL)
g->vex[p1].first_edge = node1;
else
link_last(g->vex[p1].first_edge, node1);
node2 = (ENode *)malloc(sizeof(ENode));
node2->next_edge = NULL;
node2->ivex = p1;
if(g->vex[p2].first_edge == NULL)
g->vex[p2].first_edge = node2;
else
link_last(g->vex[p2].first_edge, node2);
}
}
int min(int a, int b)
{
return a < b ? a : b;
}
// 求割点核心
void dfs(int cur, int father, Graph g, Info* info)
{
info->index++;
info->num[cur] = info->index;
info->low[cur] = info->index;
info->child = 0;//记录每个顶点孩子数量
ENode *node;
node = g.vex[cur].first_edge;
while(node != NULL){ //访问 每个 临接点
if(info->num[node->ivex] == 0){
info->child++;
dfs(node->ivex, cur, g, info);
info->low[cur] = min(info->low[cur], info->low[node->ivex]);
if(info->root != cur && info->low[node->ivex] >= info->num[cur] )
{
info->flag[cur] = 1;
info->cnt++;
}
if(info->root == cur && info->child == 2)
{
info->flag[cur] = 1;
info->cnt++;
}
}
else if(node->ivex != father){
info->low[cur] = min(info->low[cur], info->num[node->ivex]);
}
node = node->next_edge;
}
return ;
}
int main()
{
Graph g;
create_graph(&g);
Info info;
info.index = 0;
info.root = 0;
int i;
for(int i = 0; i < g.vex_num; i++ ){
info.num[i] = 0;// 这个必须初始化 为 0 表示未访问
info.cnt = 0;
}
dfs(0, 0, g, &info);
if(info.cnt == 0){
printf("\n该图不存在割点");
return 0;
}
printf("\n此图有%d个割点 : ",info.cnt);
for(i = 0; i < g.vex_num; i++ ){
if(info.flag[i] == 1)
printf("%c ", g.vex[i].data);
}
return 0;
}
上一篇: 分治算法
下一篇: 无向图求割点-Tarjan算法