欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python基于递归算法求最小公倍数和最大公约数示例

程序员文章站 2022-06-03 12:31:27
本文实例讲述了Python基于递归算法求最小公倍数和最大公约数。分享给大家供大家参考,具体如下: # 最小公倍数 def lcm(a, b, c=1):...

本文实例讲述了Python基于递归算法求最小公倍数和最大公约数。分享给大家供大家参考,具体如下:

# 最小公倍数
def lcm(a, b, c=1):
  if a * c % b != 0:
    return lcm(a, b, c+1)
  else:
    return a*c
test_cases = [(4, 8), (35, 42), (5, 7), (20, 10)]
for case in test_cases:
  print('lcm of {} & {} is {}'.format(*case, lcm(*case)))
def lcm(a, b):
  for i in range(2, min(a,b)+1):
    if a % i == 0 and b % i == 0:
      return i * lcm(a//i, b//i)
  else:
    return a*b
test_cases = [(4, 8), (5, 7), (24, 16), (35, 42)]
for case in test_cases:
  print('lcm of {} & {} is {}'.format(*case, lcm(*case)))
# 最大公约数
def gcd(a, b):
  if a == b:
    return a
  elif a-b > b:
    return gcd(a-b, b)
  else:
    return gcd(b, a-b)
test_cases = [(35, 14), (88, 66), (5, 4), (20, 10)]
for case in test_cases:
  print('GCD of {} & {} is {}'.format(*case, gcd(*case)))

运行结果:

lcm of 4 & 8 is 8
lcm of 35 & 42 is 210
lcm of 5 & 7 is 35
lcm of 20 & 10 is 20
GCD of 35 & 14 is 7
GCD of 88 & 66 is 22
GCD of 5 & 4 is 1
GCD of 20 & 10 is 10

PS:这里再为大家推荐一款本站相关在线工具供大家参考:

在线最小公倍数/最大公约数计算工具:

更多关于Python相关内容感兴趣的读者可查看本站专题:《》、《》、《》、《》、《》及《》

希望本文所述对大家Python程序设计有所帮助。