欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

点云处理--voxel filter

程序员文章站 2022-06-02 21:42:28
...
# 实现voxel滤波,并加载数据集中的文件进行验证

# import open3d as o3d 
import os
import numpy as np
from pyntcloud import PyntCloud

# 功能:对点云进行voxel滤波
# 输入:
#     point_cloud:输入点云
#     leaf_size: voxel尺寸
def voxel_filter(point_cloud, leaf_size, mode):
    filtered_points = []
    data = point_cloud
    # 作业3
    # 屏蔽开始
    #1.计算点云的最大最小值
    D_min = data.min(0)
    D_max = data.max(0)
    #2.设定划分体素大小,计算空间划分份数1x3
    D = (D_max - D_min) / leaf_size
    #3.每个点计算划分索引
    point_x, point_y, point_z = np.array(data.x), np.array(data.y), np.array(data.z)
    hx = np.floor((point_x - D[0]) / leaf_size)
    hy = np.floor((point_y - D[1]) / leaf_size)
    hz = np.floor((point_z - D[2]) / leaf_size)
    index = np.array(np.floor(hx + hy * D[0] + hz * D[0] * D[1]))   #Nx1

    #不进行排序,使用哈希映射进行点的筛选#

    
    #4.对索引进行排序
    data_index_point = np.c_[index, point_x, point_y, point_z]
    sort_idx = data_index_point[:, 0].argsort()
    data_index_point = data_index_point[sort_idx]
    size = data_index_point.shape[0]
    tem_point = []
    if mode == 1:
        #使用随机采样方法,索引相同的点选取最后一个为滤波输出点,相当于是随机采样了
        for i in range(size - 1):
            if(data_index_point[i][0] != data_index_point[i+1][0]):
                filtered_points.append(data_index_point[i][1:])
        #最后一个没有比较,加上
        filtered_points.append(data_index_point[size-1][1:])
        filtered_points = np.array(filtered_points)
    if mode == 2:
        #使用计算均值方法
        for i in range(size - 1):
            #判断前一个序号和后一个是否相等
            if data_index_point[i][0] == data_index_point[i+1][0]: #对于只有两个点的就会只保留一个点
                tem_point.append(data_index_point[i][1:])
                continue
            if tem_point == []:
                continue
            filtered_points.append(np.mean(tem_point, axis=0))
            tem_point = []
        filtered_points = np.array(filtered_points)
    
    #4.利用哈希表将点的索引映射到哈希容器中,注意排除冲突的点

    # 屏蔽结束

    # 把点云格式改成array,并对外返回
    filtered_points = np.array(filtered_points, dtype=np.float64)
    return filtered_points
    

def main():
    # # 从ModelNet数据集文件夹中自动索引路径,加载点云
    # cat_index = 10 # 物体编号,范围是0-39,即对应数据集中40个物体
    # root_dir = '/Users/renqian/cloud_lesson/ModelNet40/ply_data_points' # 数据集路径
    # cat = os.listdir(root_dir)
    # filename = os.path.join(root_dir, cat[cat_index],'train', cat[cat_index]+'_0001.ply') # 默认使用第一个点云
    # point_cloud_pynt = PyntCloud.from_file(file_name)

    # 加载自己的点云文件
    file_name = "airplane_0001.ply"
    point_cloud_pynt = PyntCloud.from_file(file_name)

    # 转成open3d能识别的格式
    # point_cloud_o3d = point_cloud_pynt.to_instance("open3d", mesh=False)
    # o3d.visualization.draw_geometries([point_cloud_o3d]) # 显示原始点云
    print('the original pointcloud size is:', point_cloud_pynt.points.shape[0])
    # 调用voxel滤波函数,实现滤波
    filtered_cloud = voxel_filter(point_cloud_pynt.points, 10, 2)
    print('the pointcloud size is:', filtered_cloud.shape[0])
    # point_cloud_o3d.points = o3d.utility.Vector3dVector(filtered_cloud)
    # 显示滤波后的点云
    # o3d.visualization.draw_geometries([point_cloud_o3d])

if __name__ == '__main__':
    main()