【原创】(十三)Linux内存管理之vma/malloc/mmap
背景
-
read the fucking source code!
--by 鲁迅 -
a picture is worth a thousand words.
--by 高尔基
说明:
- kernel版本:4.14
- arm64处理器,contex-a53,双核
- 使用工具:source insight 3.5, visio
1. 概述
这篇文章,让我们来看看用户态进程的地址空间情况,主要会包括以下:
-
vma
; -
malloc
; -
mmap
;
进程地址空间中,我们常见的代码段,数据段,bss段等,实际上都是一段地址空间区域。linux将地址空间中的区域称为virtual memory area
, 简称vma
,使用struct vm_area_struct
来描述。
在进行内存申请和映射时,都会去地址空间中申请一段虚拟地址区域,而这部分操作也与vma
关系密切,因此本文将vma/malloc/mmap
三个放到一块来进行分析。
开启探索之旅吧。
2. 数据结构
主要涉及两个结构体:struct mm_struct
和struct vm_area_struct
。
-
struct mm_struct
用于描述与进程地址空间有关的全部信息,这个结构也包含在进程描述符中,关键字段的描述见注释。
struct mm_struct { struct vm_area_struct *mmap; /* list of vmas */ //指向vma对象的链表头 struct rb_root mm_rb; //指向vma对象的红黑树的根 u64 vmacache_seqnum; /* per-thread vmacache */ #ifdef config_mmu unsigned long (*get_unmapped_area) (struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); // 在进程地址空间中搜索有效线性地址区间的方法 #endif unsigned long mmap_base; /* base of mmap area */ unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ #ifdef config_have_arch_compat_mmap_bases /* base adresses for compatible mmap() */ unsigned long mmap_compat_base; unsigned long mmap_compat_legacy_base; #endif unsigned long task_size; /* size of task vm space */ unsigned long highest_vm_end; /* highest vma end address */ pgd_t * pgd; //指向页全局目录 /** * @mm_users: the number of users including userspace. * * use mmget()/mmget_not_zero()/mmput() to modify. when this drops * to 0 (i.e. when the task exits and there are no other temporary * reference holders), we also release a reference on @mm_count * (which may then free the &struct mm_struct if @mm_count also * drops to 0). */ atomic_t mm_users; //使用计数器 /** * @mm_count: the number of references to &struct mm_struct * (@mm_users count as 1). * * use mmgrab()/mmdrop() to modify. when this drops to 0, the * &struct mm_struct is freed. */ atomic_t mm_count; //使用计数器 atomic_long_t nr_ptes; /* pte page table pages */ //进程页表数 #if config_pgtable_levels > 2 atomic_long_t nr_pmds; /* pmd page table pages */ #endif int map_count; /* number of vmas */ //vma的个数 spinlock_t page_table_lock; /* protects page tables and some counters */ struct rw_semaphore mmap_sem; struct list_head mmlist; /* list of maybe swapped mm's. these are globally strung * together off init_mm.mmlist, and are protected * by mmlist_lock */ unsigned long hiwater_rss; /* high-watermark of rss usage */ unsigned long hiwater_vm; /* high-water virtual memory usage */ unsigned long total_vm; /* total pages mapped */ //进程地址空间的页数 unsigned long locked_vm; /* pages that have pg_mlocked set */ //锁住的页数,不能换出 unsigned long pinned_vm; /* refcount permanently increased */ unsigned long data_vm; /* vm_write & ~vm_shared & ~vm_stack */ //数据段内存的页数 unsigned long exec_vm; /* vm_exec & ~vm_write & ~vm_stack */ //可执行内存映射的页数 unsigned long stack_vm; /* vm_stack */ //用户态堆栈的页数 unsigned long def_flags; unsigned long start_code, end_code, start_data, end_data; //代码段,数据段等的地址 unsigned long start_brk, brk, start_stack; //堆栈段的地址,start_stack表示用户态堆栈的起始地址,brk为堆的当前最后地址 unsigned long arg_start, arg_end, env_start, env_end; //命令行参数的地址,环境变量的地址 unsigned long saved_auxv[at_vector_size]; /* for /proc/pid/auxv */ /* * special counters, in some configurations protected by the * page_table_lock, in other configurations by being atomic. */ struct mm_rss_stat rss_stat; struct linux_binfmt *binfmt; cpumask_var_t cpu_vm_mask_var; /* architecture-specific mm context */ mm_context_t context; unsigned long flags; /* must use atomic bitops to access the bits */ struct core_state *core_state; /* coredumping support */ #ifdef config_membarrier atomic_t membarrier_state; #endif #ifdef config_aio spinlock_t ioctx_lock; struct kioctx_table __rcu *ioctx_table; #endif #ifdef config_memcg /* * "owner" points to a task that is regarded as the canonical * user/owner of this mm. all of the following must be true in * order for it to be changed: * * current == mm->owner * current->mm != mm * new_owner->mm == mm * new_owner->alloc_lock is held */ struct task_struct __rcu *owner; #endif struct user_namespace *user_ns; /* store ref to file /proc/<pid>/exe symlink points to */ struct file __rcu *exe_file; #ifdef config_mmu_notifier struct mmu_notifier_mm *mmu_notifier_mm; #endif #if defined(config_transparent_hugepage) && !use_split_pmd_ptlocks pgtable_t pmd_huge_pte; /* protected by page_table_lock */ #endif #ifdef config_cpumask_offstack struct cpumask cpumask_allocation; #endif #ifdef config_numa_balancing /* * numa_next_scan is the next time that the ptes will be marked * pte_numa. numa hinting faults will gather statistics and migrate * pages to new nodes if necessary. */ unsigned long numa_next_scan; /* restart point for scanning and setting pte_numa */ unsigned long numa_scan_offset; /* numa_scan_seq prevents two threads setting pte_numa */ int numa_scan_seq; #endif /* * an operation with batched tlb flushing is going on. anything that * can move process memory needs to flush the tlb when moving a * prot_none or prot_numa mapped page. */ atomic_t tlb_flush_pending; #ifdef config_arch_want_batched_unmap_tlb_flush /* see flush_tlb_batched_pending() */ bool tlb_flush_batched; #endif struct uprobes_state uprobes_state; #ifdef config_hugetlb_page atomic_long_t hugetlb_usage; #endif struct work_struct async_put_work; #if is_enabled(config_hmm) /* hmm needs to track a few things per mm */ struct hmm *hmm; #endif } __randomize_layout;
-
struct vm_area_struct
用于描述进程地址空间中的一段虚拟区域,每一个vma
都对应一个struct vm_area_struct
。
/* * this struct defines a memory vmm memory area. there is one of these * per vm-area/task. a vm area is any part of the process virtual memory * space that has a special rule for the page-fault handlers (ie a shared * library, the executable area etc). */ struct vm_area_struct { /* the first cache line has the info for vma tree walking. */ unsigned long vm_start; /* our start address within vm_mm. */ //起始地址 unsigned long vm_end; /* the first byte after our end address within vm_mm. */ //结束地址,区间中不包含结束地址 /* linked list of vm areas per task, sorted by address */ //按起始地址排序的链表 struct vm_area_struct *vm_next, *vm_prev; struct rb_node vm_rb; //红黑树节点 /* * largest free memory gap in bytes to the left of this vma. * either between this vma and vma->vm_prev, or between one of the * vmas below us in the vma rbtree and its ->vm_prev. this helps * get_unmapped_area find a free area of the right size. */ unsigned long rb_subtree_gap; /* second cache line starts here. */ struct mm_struct *vm_mm; /* the address space we belong to. */ pgprot_t vm_page_prot; /* access permissions of this vma. */ unsigned long vm_flags; /* flags, see mm.h. */ /* * for areas with an address space and backing store, * linkage into the address_space->i_mmap interval tree. */ struct { struct rb_node rb; unsigned long rb_subtree_last; } shared; /* * a file's map_private vma can be in both i_mmap tree and anon_vma * list, after a cow of one of the file pages. a map_shared vma * can only be in the i_mmap tree. an anonymous map_private, stack * or brk vma (with null file) can only be in an anon_vma list. */ struct list_head anon_vma_chain; /* serialized by mmap_sem & * page_table_lock */ struct anon_vma *anon_vma; /* serialized by page_table_lock */ /* function pointers to deal with this struct. */ const struct vm_operations_struct *vm_ops; /* information about our backing store: */ unsigned long vm_pgoff; /* offset (within vm_file) in page_size units */ struct file * vm_file; /* file we map to (can be null). */ //指向文件的一个打开实例 void * vm_private_data; /* was vm_pte (shared mem) */ atomic_long_t swap_readahead_info; #ifndef config_mmu struct vm_region *vm_region; /* nommu mapping region */ #endif #ifdef config_numa struct mempolicy *vm_policy; /* numa policy for the vma */ #endif struct vm_userfaultfd_ctx vm_userfaultfd_ctx; } __randomize_layout;
关系图来了:
是不是有点眼熟?这个跟内核中的vmap机制
很类似。
宏观的看一下进程地址空间中的各个vma
:
针对vma
的操作,有如下接口:
/* vma的查找 */ /* look up the first vma which satisfies addr < vm_end, null if none. */ extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); //查找第一个满足addr < vm_end的vma块 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, struct vm_area_struct **pprev); //与find_vma功能类似,不同之处在于还会返回vma链接的前一个vma; static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr); //查找与start_addr~end_addr区域有交集的vma /* vma的插入 */ extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); //插入vma到红黑树中和链表中 /* vma的合并 */ extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx); //将vma与附近的vma进行融合操作 /* vma的拆分 */ extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); //将vma以addr为界线分成两个vma
上述的操作基本上也就是针对红黑树的操作。
3. malloc
malloc
大家都很熟悉,那么它是怎么与底层去交互并申请到内存的呢?
图来了:
如图所示,malloc
最终会调到底层的sys_brk
函数和sys_mmap
函数,在分配小内存时调用sys_brk
函数,动态的调整进程地址空间中的brk
位置;在分配大块内存时,调用sys_mmap
函数,在堆和栈之间找到一片区域进行映射处理。
先来看sys_brk
函数,通过syscall_define1
来定义,整体的函数调用流程如下:
从函数的调用过程中可以看出有不少操作是针对vma
的,那么结合起来的效果图如下:
整个过程看起来就比较清晰和简单了,每个进程都用struct mm_struct
来描述自身的进程地址空间,这些空间都是一些vma
区域,通过一个红黑树和链表来管理。因此针对malloc
的处理,会去动态的调整brk
的位置,具体的大小则由struct vm_area_struct
结构中的vm_start ~ vm_end
来指定。在实际过程中,会根据请求分配区域是否与现有vma
重叠的情况来进行处理,或者重新申请一个vma
来描述这段区域,并最终插入到红黑树和链表中。
完成这段申请后,只是开辟了一段区域,通常还不会立马分配物理内存,物理内存的分配会发生在访问时出现缺页异常后再处理,这个后续也会有文章来进一步分析。
4. mmap
mmap
用于内存映射,也就是将一段区域映射到自己的进程地址空间中,分为两种:
- 文件映射: 将文件区域映射到进程空间,文件存放在存储设备上;
- 匿名映射:没有文件对应的区域映射,内容存放在物理内存上;
同时,针对其他进程是否可见,又分为两种:
- 私有映射:将数据源拷贝副本,不影响其他进程;
- 共享映射:共享的进程都能看到;
根据排列组合,就存在以下几种情况了:
- 私有匿名映射: 通常分配大块内存时使用,堆,栈,bss段等;
- 共享匿名映射:常用于父子进程间通信,在内存文件系统中创建
/dev/zero
设备; - 私有文件映射:常用的比如动态库加载,代码段,数据段等;
- 共享文件映射:常用于进程间通信,文件读写等;
常见的prot
权限和flags
如下:
#define prot_read 0x1 /* page can be read */ #define prot_write 0x2 /* page can be written */ #define prot_exec 0x4 /* page can be executed */ #define prot_sem 0x8 /* page may be used for atomic ops */ #define prot_none 0x0 /* page can not be accessed */ #define prot_growsdown 0x01000000 /* mprotect flag: extend change to start of growsdown vma */ #define prot_growsup 0x02000000 /* mprotect flag: extend change to end of growsup vma */ #define map_shared 0x01 /* share changes */ #define map_private 0x02 /* changes are private */ #define map_type 0x0f /* mask for type of mapping */ #define map_fixed 0x10 /* interpret addr exactly */ #define map_anonymous 0x20 /* don't use a file */ #define map_growsdown 0x0100 /* stack-like segment */ #define map_denywrite 0x0800 /* etxtbsy */ #define map_executable 0x1000 /* mark it as an executable */ #define map_locked 0x2000 /* pages are locked */ #define map_noreserve 0x4000 /* don't check for reservations */ #define map_populate 0x8000 /* populate (prefault) pagetables */ #define map_nonblock 0x10000 /* do not block on io */ #define map_stack 0x20000 /* give out an address that is best suited for process/thread stacks */ #define map_hugetlb 0x40000 /* create a huge page mapping */
mmap
的操作,最终会调用到do_mmap
函数,最后来一张调用图:
上一篇: python网络编程:UDP方式传输数据
下一篇: 逻辑卷LVM