BZOJ3453: tyvj 1858 XLkxc(拉格朗日插值)
程序员文章站
2022-05-30 21:59:12
题意 "题目链接" Sol 把式子拆开,就是求这个东西 $$\sum_{i = 0} ^n \sum_{j = 1}^{a + id} \sum_{x =1}^j x^k \pmod P$$ 那么设$f(x) = \sum_{i = 1}^n i^k$,这是个经典的$k + 1$多项式,直接差值 式 ......
题意
sol
把式子拆开,就是求这个东西
\[\sum_{i = 0} ^n \sum_{j = 1}^{a + id} \sum_{x =1}^j x^k \pmod p\]
那么设\(f(x) = \sum_{i = 1}^n i^k\),这是个经典的\(k + 1\)多项式,直接差值
式子就可以化成
\[\sum_{i = 0} ^n \sum_{j = 1}^{a + id} f(j) \pmod p\]
设\(g(x) = \sum_{i = 1}^n f(x)\)
对\(g\)差分之后实际上也就得到了\(f(x)\),根据多项式的定义,\(g(x)\)是个\(k+2\)次多项式。
同理我们要求的就是个\(k+3\)次多项式
直接暴力插值就行了
时间复杂度:\(o(tk^3)\)
#include<bits/stdc++.h> #define int long long using namespace std; const int mod = 1234567891, maxn = 127; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int t, k, a, n, d, f[maxn], g[maxn], x[maxn]; int add(int x, int y) { if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y; } int add2(int &x, int y) { if(x + y < 0) x = (x + y + mod); else x = (x + y >= mod ? x + y - mod : x + y); } int mul(int x, int y) { return 1ll * x * y % mod; } int fp(int a, int p) { int base = 1; while(p) { if(p & 1) base = mul(base, a); a = mul(a, a); p >>= 1; } return base; } int large(int *a, int k, int n) { for(int i = 0; i <= k; i++) x[i] = i; int ans = 0; for(int i = 0; i <= k; i++) { int up = a[i], down = 1; for(int j = 0; j <= k; j++) { if(i == j) continue; up = mul(up, add(n, -x[j])); down = mul(down, add(x[i], -x[j])); } add2(ans, mul(up, fp(down, mod - 2))); } return ans; } signed main() { #ifndef online_judge //freopen("a.in", "r", stdin);freopen("a.out", "w", stdout); #endif t = read(); while(t--) { k = read(), a = read(), n = read(), d = read(); memset(f, 0, sizeof(f)); memset(g, 0, sizeof(g)); /* for(int i = 1; i <= k + 4; i++) f[i] = add(f[i - 1], fp(i, k)); for(int i = 1; i <= k + 4; i++) g[i] = add(g[i - 1], large(f, k + 4, a + i * d));//ֱ直接这样写是错的 for(int i = 1; i <= k + 4; i++) f[i] = add(f[i - 1], large(g, k + 4, i)); printf("%d\n", large(g, k + 4, n)); */ for(int i = 1; i <= k + 4; i++) f[i] = add(f[i - 1], fp(i, k)); for(int i = 1; i <= k + 4; i++) f[i] = add(f[i], f[i - 1]); for(int i = 0; i <= k + 4; i++) g[i] = add(i > 0 ? g[i - 1] : 0, large(f, k + 4, add(a, mul(i, d)))); printf("%lld\n", large(g, k + 4, n)); } return 0; } /* 5 123 123456789 456879 132 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 */
下一篇: python字符串大小写转换